通过 UWB 技术的无线电芯片链路质量指标和飞行时间分析进行人工智能增强距离估计:比较评估

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-17 DOI:10.1109/LSENS.2024.3462600
Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel
{"title":"通过 UWB 技术的无线电芯片链路质量指标和飞行时间分析进行人工智能增强距离估计:比较评估","authors":"Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel","doi":"10.1109/LSENS.2024.3462600","DOIUrl":null,"url":null,"abstract":"Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Enhanced Distance Estimation via Radio Chip Link Quality Metrics and Time-of-Flight Analysis With UWB Technology: A Comparative Evaluation\",\"authors\":\"Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel\",\"doi\":\"10.1109/LSENS.2024.3462600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682501/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10682501/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

精确的距离估计在各个领域都至关重要,影响着从日常活动到高级研究的方方面面。在无线传感器网络(WSN)中,精确的距离估计对定位、能效、动态路由和覆盖优化等不同应用至关重要。在这封信中,我们致力于评估各种技术的距离精确估计,包括亚 GHz 低功耗、低数据率无线电芯片和超宽带 (UWB) 收发器。我们综合利用飞行时间(ToF)、链路质量度量(LQM)和机器学习(ML)技术来阐明每种技术的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-Enhanced Distance Estimation via Radio Chip Link Quality Metrics and Time-of-Flight Analysis With UWB Technology: A Comparative Evaluation
Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1