Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel
{"title":"通过 UWB 技术的无线电芯片链路质量指标和飞行时间分析进行人工智能增强距离估计:比较评估","authors":"Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel","doi":"10.1109/LSENS.2024.3462600","DOIUrl":null,"url":null,"abstract":"Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Enhanced Distance Estimation via Radio Chip Link Quality Metrics and Time-of-Flight Analysis With UWB Technology: A Comparative Evaluation\",\"authors\":\"Maissa Taktak;Mohamed Khalil Baazaoui;Ilef Ketata;Salwa Sahnoun;Ahmed Fakhfakh;Faouzi Derbel\",\"doi\":\"10.1109/LSENS.2024.3462600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682501/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10682501/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
AI-Enhanced Distance Estimation via Radio Chip Link Quality Metrics and Time-of-Flight Analysis With UWB Technology: A Comparative Evaluation
Precise distance estimation is essential in various fields, influencing customary aspects from daily activities to advanced research. In wireless sensor networks (WSN) accurate distance estimation is crucial for different applications, such as localization, energy efficiency, dynamic routing, and coverage optimization. In this letter, we strive to assess distance accurate estimation across various technologies, including a sub-GHz low-power, low-data-rate radio chip, and the ultra-wideband (UWB) transceiver. We utilize a combination of Time-of-Flight (ToF), link quality metrics (LQM), and machine learning (ML) techniques to elucidate the strengths and limitations of each technology.