Zoltán Kovács-Krausz, Dániel Nagy, Albin Márffy, Bogdan Karpiak, Zoltán Tajkov, László Oroszlány, János Koltai, Péter Nemes-Incze, Saroj P. Dash, Péter Makk, Szabolcs Csonka, Endre Tóvári
{"title":"ZrTe5 中压力诱导拓扑相变的特征","authors":"Zoltán Kovács-Krausz, Dániel Nagy, Albin Márffy, Bogdan Karpiak, Zoltán Tajkov, László Oroszlány, János Koltai, Péter Nemes-Incze, Saroj P. Dash, Péter Makk, Szabolcs Csonka, Endre Tóvári","doi":"10.1038/s41535-024-00679-7","DOIUrl":null,"url":null,"abstract":"<p>The layered van der Waals material ZrTe<sub>5</sub> is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe<sub>5</sub> nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe<sub>5</sub> is a weak TI in ambient conditions.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"12 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signature of pressure-induced topological phase transition in ZrTe5\",\"authors\":\"Zoltán Kovács-Krausz, Dániel Nagy, Albin Márffy, Bogdan Karpiak, Zoltán Tajkov, László Oroszlány, János Koltai, Péter Nemes-Incze, Saroj P. Dash, Péter Makk, Szabolcs Csonka, Endre Tóvári\",\"doi\":\"10.1038/s41535-024-00679-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The layered van der Waals material ZrTe<sub>5</sub> is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe<sub>5</sub> nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe<sub>5</sub> is a weak TI in ambient conditions.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00679-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00679-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
层状范德瓦耳斯材料 ZrTe5 是众所周知的候选拓扑绝缘体(TI),但其拓扑相以及与其他特性(如明显的狄拉克半金属态)的关系仍是一个争论的话题。我们采用半经典多载流子传输(MCT)模型分析了 ZrTe5 纳米器件在高达 2 GPa 的静水压力下的磁传输。在热激活的背景下,我们评估了 10 至 300 K 之间 MCT 结果的温度依赖性,并获得了化学势附近导带和价带边缘的位置。我们发现有证据表明,随着压力的增加,带隙会关闭或重新打开,这与从弱 TI 到强 TI 的相变是一致的。这与 ab initio 带结构计算的预期结果以及以前的观察结果一致,即 CVT 生长的 ZrTe5 在环境条件下是一种弱 TI。
Signature of pressure-induced topological phase transition in ZrTe5
The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.