圆偏振光破坏胶体金属纳米粒子溶液中的手性对称性

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-05 DOI:10.1021/acsnano.4c09349
Monika Ghalawat, Daniel Feferman, Lucas V. Besteiro, Wanting He, Artur Movsesyan, Alina Muravitskaya, Jesus Valdez, Audrey Moores, Zhiming Wang, Dongling Ma, Alexander O. Govorov, Gil Markovich
{"title":"圆偏振光破坏胶体金属纳米粒子溶液中的手性对称性","authors":"Monika Ghalawat, Daniel Feferman, Lucas V. Besteiro, Wanting He, Artur Movsesyan, Alina Muravitskaya, Jesus Valdez, Audrey Moores, Zhiming Wang, Dongling Ma, Alexander O. Govorov, Gil Markovich","doi":"10.1021/acsnano.4c09349","DOIUrl":null,"url":null,"abstract":"Shape symmetry breaking in the formation of inorganic nanostructures is of significant current interest. It was typically achieved through the growth of colloidal nanoparticles with adsorbed chiral molecules. Photochemical processes induced through asymmetric plasmon excitation by circularly polarized light in surface immobilized nanostructures also led to symmetry breaking. Here, we show that chiral symmetry breaking can be achieved by randomly rotating gold@silver core–shell nanobars in colloidal solution using circularly polarized illumination, where orientational averaging does not eliminate the symmetry breaking of an asymmetric plasmon-induced galvanic replacement reaction. Different morphological effects that are produced by circularly vs linearly polarized light illumination demonstrate the intricate effect of light polarization on the localized plasmonic-induced photochemical response. The essential features of this symmetry breaking, such as illumination wavelength dependence, were reproduced by simulations of circularly polarized light-excited-plasmon-induced hot-electron generation as the source for asymmetric metal deposition. The symmetry breaking becomes smaller in more symmetric geometrical shapes, such as triangular nanoprisms and nanocubes, and down to zero in spherical ones. The degree of symmetry breaking rises when the nanobars are immobilized on a substrate and illuminated from a single direction.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral Symmetry Breaking in Colloidal Metal Nanoparticle Solutions by Circularly Polarized Light\",\"authors\":\"Monika Ghalawat, Daniel Feferman, Lucas V. Besteiro, Wanting He, Artur Movsesyan, Alina Muravitskaya, Jesus Valdez, Audrey Moores, Zhiming Wang, Dongling Ma, Alexander O. Govorov, Gil Markovich\",\"doi\":\"10.1021/acsnano.4c09349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape symmetry breaking in the formation of inorganic nanostructures is of significant current interest. It was typically achieved through the growth of colloidal nanoparticles with adsorbed chiral molecules. Photochemical processes induced through asymmetric plasmon excitation by circularly polarized light in surface immobilized nanostructures also led to symmetry breaking. Here, we show that chiral symmetry breaking can be achieved by randomly rotating gold@silver core–shell nanobars in colloidal solution using circularly polarized illumination, where orientational averaging does not eliminate the symmetry breaking of an asymmetric plasmon-induced galvanic replacement reaction. Different morphological effects that are produced by circularly vs linearly polarized light illumination demonstrate the intricate effect of light polarization on the localized plasmonic-induced photochemical response. The essential features of this symmetry breaking, such as illumination wavelength dependence, were reproduced by simulations of circularly polarized light-excited-plasmon-induced hot-electron generation as the source for asymmetric metal deposition. The symmetry breaking becomes smaller in more symmetric geometrical shapes, such as triangular nanoprisms and nanocubes, and down to zero in spherical ones. The degree of symmetry breaking rises when the nanobars are immobilized on a substrate and illuminated from a single direction.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09349\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09349","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在无机纳米结构的形成过程中打破形状对称性是当前人们非常关注的问题。它通常是通过吸附手性分子的胶体纳米粒子的生长实现的。在表面固定的纳米结构中,圆偏振光通过非对称等离子激发诱导的光化学过程也会导致对称性破缺。在此,我们展示了在胶体溶液中利用圆偏振光随机旋转金@银核壳纳米棒可实现手性对称性破缺,其中取向平均化并不能消除非对称等离子体诱导的电化学置换反应的对称性破缺。圆偏振光照明与线偏振光照明产生的不同形态效应表明,光偏振对局部等离子体诱导的光化学反应具有错综复杂的影响。圆偏振光激发的等离子体诱导的热电子生成是非对称金属沉积的源头,通过模拟再现了这种对称性破缺的基本特征,如与照明波长的相关性。在三角形纳米棱镜和纳米立方体等对称性较强的几何形状中,对称性破坏的程度变小,而在球形纳米棱镜和纳米立方体中,对称性破坏的程度降至零。当纳米棒固定在基底上并从单一方向照射时,对称性破坏的程度会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chiral Symmetry Breaking in Colloidal Metal Nanoparticle Solutions by Circularly Polarized Light
Shape symmetry breaking in the formation of inorganic nanostructures is of significant current interest. It was typically achieved through the growth of colloidal nanoparticles with adsorbed chiral molecules. Photochemical processes induced through asymmetric plasmon excitation by circularly polarized light in surface immobilized nanostructures also led to symmetry breaking. Here, we show that chiral symmetry breaking can be achieved by randomly rotating gold@silver core–shell nanobars in colloidal solution using circularly polarized illumination, where orientational averaging does not eliminate the symmetry breaking of an asymmetric plasmon-induced galvanic replacement reaction. Different morphological effects that are produced by circularly vs linearly polarized light illumination demonstrate the intricate effect of light polarization on the localized plasmonic-induced photochemical response. The essential features of this symmetry breaking, such as illumination wavelength dependence, were reproduced by simulations of circularly polarized light-excited-plasmon-induced hot-electron generation as the source for asymmetric metal deposition. The symmetry breaking becomes smaller in more symmetric geometrical shapes, such as triangular nanoprisms and nanocubes, and down to zero in spherical ones. The degree of symmetry breaking rises when the nanobars are immobilized on a substrate and illuminated from a single direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Chiral Symmetry Breaking in Colloidal Metal Nanoparticle Solutions by Circularly Polarized Light Rise and Decay of Photoluminescence in Upconverting Lanthanide-Doped Nanocrystals Tailoring Lithium Horizontal Deposition for Long-Lasting High-Loading NCA (≥5 mA h cm–2)||Lithium–Metal Full Cells in Carbonate Electrolytes Biomimetic Nanomodulator Regulates Oxidative and Inflammatory Stresses to Treat Sepsis-Associated Encephalopathy A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1