Jeong-A. Lee , Haneul Kang , Saehun Kim , Kyungho Lee , Jeong Hwan Byun , Eunji Kwon , Samuel Seo , Kyuju Kwak , Kyoung Han Ryu , Nam-Soon Choi
{"title":"揭示无阳极锂金属电池的降解机制","authors":"Jeong-A. Lee , Haneul Kang , Saehun Kim , Kyungho Lee , Jeong Hwan Byun , Eunji Kwon , Samuel Seo , Kyuju Kwak , Kyoung Han Ryu , Nam-Soon Choi","doi":"10.1016/j.ensm.2024.103826","DOIUrl":null,"url":null,"abstract":"<div><div>Anode-free Li-metal batteries (AFLMBs), in which Li<sup>+</sup> ions from the cathode are deposited on a Cu substrate and the deposited Li-metal serves as the anode, exhibit higher energy density compared to Li-metal batteries (LMBs). However, achieving stable cycle performance, even at moderate operating conditions, is difficult and has so far hindered their practical uses. In AFLMBs, the homogeneity of solid electrolyte interphase (SEI), initially created by electrolyte reduction on Cu substrate, is not maintained during Li-metal deposition, leading to uncontrolled electrolyte decomposition. The SEI is therefore not conserved, and uneven Li deposition morphology is induced on the Cu substrate and the eventual instability of SEI leads to the overall degradation of AFLMBs. Here, we report on the failure mechanisms of AFLMBs through a comparative study with LMBs using 3 M lithium <em>bis</em>(fluorosulfonyl)imide (LiFSI) dissolved in <em>N,N</em>-dimethylsulfamoyl fluoride. Our investigation reveals that the SEI inhomogeneity in AFLMBs makes Li<sup>+</sup> transport through SEI sluggish and non-uniform, triggering local compositional changes of the initially formed SEI on the Cu substrate and unwanted consumption of FSI<sup>−</sup> anion from the electrolyte. This work provides clear understanding to the interfacial engineering and important roles of Li-metal on the Cu substrate in AFLMBs, promising the creation of stable SEI, reversible electrochemical reaction of Li-metal, and interfacial stability of the cathode in LMBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103826"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling degradation mechanisms of anode-free Li-metal batteries\",\"authors\":\"Jeong-A. Lee , Haneul Kang , Saehun Kim , Kyungho Lee , Jeong Hwan Byun , Eunji Kwon , Samuel Seo , Kyuju Kwak , Kyoung Han Ryu , Nam-Soon Choi\",\"doi\":\"10.1016/j.ensm.2024.103826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anode-free Li-metal batteries (AFLMBs), in which Li<sup>+</sup> ions from the cathode are deposited on a Cu substrate and the deposited Li-metal serves as the anode, exhibit higher energy density compared to Li-metal batteries (LMBs). However, achieving stable cycle performance, even at moderate operating conditions, is difficult and has so far hindered their practical uses. In AFLMBs, the homogeneity of solid electrolyte interphase (SEI), initially created by electrolyte reduction on Cu substrate, is not maintained during Li-metal deposition, leading to uncontrolled electrolyte decomposition. The SEI is therefore not conserved, and uneven Li deposition morphology is induced on the Cu substrate and the eventual instability of SEI leads to the overall degradation of AFLMBs. Here, we report on the failure mechanisms of AFLMBs through a comparative study with LMBs using 3 M lithium <em>bis</em>(fluorosulfonyl)imide (LiFSI) dissolved in <em>N,N</em>-dimethylsulfamoyl fluoride. Our investigation reveals that the SEI inhomogeneity in AFLMBs makes Li<sup>+</sup> transport through SEI sluggish and non-uniform, triggering local compositional changes of the initially formed SEI on the Cu substrate and unwanted consumption of FSI<sup>−</sup> anion from the electrolyte. This work provides clear understanding to the interfacial engineering and important roles of Li-metal on the Cu substrate in AFLMBs, promising the creation of stable SEI, reversible electrochemical reaction of Li-metal, and interfacial stability of the cathode in LMBs.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103826\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006524\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006524","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
与锂金属电池(LMB)相比,无阳极锂金属电池(AFLMB)具有更高的能量密度,在这种电池中,阴极的锂离子沉积在铜基板上,沉积的锂金属作为阳极。然而,即使在中等工作条件下也很难实现稳定的循环性能,这阻碍了它们的实际应用。在 AFLMB 中,最初通过在铜基板上还原电解质而形成的固体电解质相(SEI)在锂金属沉积过程中无法保持均匀性,从而导致电解质分解失控。因此,SEI 无法保持,锂沉积形态在铜基板上不均匀,SEI 的最终不稳定性导致了 AFLMB 的整体降解。在此,我们使用溶解在 N,N-二甲基氨基磺酰氟中的 3 M 双(氟磺酰)亚胺锂(LiFSI),通过与 LMB 的比较研究报告了 AFLMB 的失效机制。我们的研究发现,AFLMB 中 SEI 的不均匀性使得 Li+ 通过 SEI 的传输变得迟缓和不均匀,引发了铜基底上最初形成的 SEI 的局部成分变化以及电解液中 FSI- 阴离子的不必要消耗。这项研究清楚地揭示了 AFLMBs 中 Cu 基底上的界面工程和锂金属的重要作用,有望在 LMBs 中形成稳定的 SEI、锂金属的可逆电化学反应和阴极的界面稳定性。
Unveiling degradation mechanisms of anode-free Li-metal batteries
Anode-free Li-metal batteries (AFLMBs), in which Li+ ions from the cathode are deposited on a Cu substrate and the deposited Li-metal serves as the anode, exhibit higher energy density compared to Li-metal batteries (LMBs). However, achieving stable cycle performance, even at moderate operating conditions, is difficult and has so far hindered their practical uses. In AFLMBs, the homogeneity of solid electrolyte interphase (SEI), initially created by electrolyte reduction on Cu substrate, is not maintained during Li-metal deposition, leading to uncontrolled electrolyte decomposition. The SEI is therefore not conserved, and uneven Li deposition morphology is induced on the Cu substrate and the eventual instability of SEI leads to the overall degradation of AFLMBs. Here, we report on the failure mechanisms of AFLMBs through a comparative study with LMBs using 3 M lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in N,N-dimethylsulfamoyl fluoride. Our investigation reveals that the SEI inhomogeneity in AFLMBs makes Li+ transport through SEI sluggish and non-uniform, triggering local compositional changes of the initially formed SEI on the Cu substrate and unwanted consumption of FSI− anion from the electrolyte. This work provides clear understanding to the interfacial engineering and important roles of Li-metal on the Cu substrate in AFLMBs, promising the creation of stable SEI, reversible electrochemical reaction of Li-metal, and interfacial stability of the cathode in LMBs.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.