调节血流以改善中风患者的运动和神经生理学疗效:范围综述。

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2024-12-01 Epub Date: 2024-10-05 DOI:10.1007/s00221-024-06941-5
Mark Cummings, Sangeetha Madhavan
{"title":"调节血流以改善中风患者的运动和神经生理学疗效:范围综述。","authors":"Mark Cummings, Sangeetha Madhavan","doi":"10.1007/s00221-024-06941-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic Conditioning (IC) is a procedure involving brief periods of occlusion followed by reperfusion in stationary limbs. Blood Flow Restriction with Exercise (BFR-E) is a technique comprising blood flow restriction during aerobic or resistance exercise. Both IC and BFR-E are Blood Flow Modulation (BFM) strategies that have shown promise across various health domains and are clinically relevant for stroke rehabilitation. Despite their potential benefits, our knowledge on the application and efficacy of either intervention in stroke is limited. This scoping review aims to synthesize the existing literature on the impact of IC and BFR-E on motor and neurophysiological outcomes in individuals post-stroke. Evidence from five studies displayed enhancements in paretic leg strength, gait speed, and paretic leg fatiguability after IC. Additionally, BFR-E led to improvements in clinical performance, gait parameters, and serum lactate levels. While trends toward motor function improvement were observed post-intervention, statistically significant differences were limited. Neurophysiological changes showed inconclusive results. Our review suggests that IC and BFR-E are promising clinical approaches in stroke, however high-quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of both in stroke. Recommendations regarding future directions and clinical utility are provided.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2665-2676"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood flow modulation to improve motor and neurophysiological outcomes in individuals with stroke: a scoping review.\",\"authors\":\"Mark Cummings, Sangeetha Madhavan\",\"doi\":\"10.1007/s00221-024-06941-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic Conditioning (IC) is a procedure involving brief periods of occlusion followed by reperfusion in stationary limbs. Blood Flow Restriction with Exercise (BFR-E) is a technique comprising blood flow restriction during aerobic or resistance exercise. Both IC and BFR-E are Blood Flow Modulation (BFM) strategies that have shown promise across various health domains and are clinically relevant for stroke rehabilitation. Despite their potential benefits, our knowledge on the application and efficacy of either intervention in stroke is limited. This scoping review aims to synthesize the existing literature on the impact of IC and BFR-E on motor and neurophysiological outcomes in individuals post-stroke. Evidence from five studies displayed enhancements in paretic leg strength, gait speed, and paretic leg fatiguability after IC. Additionally, BFR-E led to improvements in clinical performance, gait parameters, and serum lactate levels. While trends toward motor function improvement were observed post-intervention, statistically significant differences were limited. Neurophysiological changes showed inconclusive results. Our review suggests that IC and BFR-E are promising clinical approaches in stroke, however high-quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of both in stroke. Recommendations regarding future directions and clinical utility are provided.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\" \",\"pages\":\"2665-2676\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-024-06941-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06941-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

缺血调理(IC)是一种在静止肢体中进行短暂闭塞然后再灌注的程序。运动性血流限制(BFR-E)是一种在有氧运动或阻力运动中限制血流的技术。IC 和 BFR-E 都是血流调节(BFM)策略,在不同的健康领域都显示出良好的前景,并且与中风康复临床相关。尽管它们具有潜在的益处,但我们对这两种干预方法在脑卒中中的应用和疗效了解有限。本范围综述旨在综合现有文献,探讨 IC 和 BFR-E 对中风后患者运动和神经电生理结果的影响。来自五项研究的证据显示,IC 可增强瘫痪腿的力量、步态速度和瘫痪腿的疲劳度。此外,BFR-E 还能改善临床表现、步态参数和血清乳酸水平。虽然在干预后观察到了运动功能改善的趋势,但统计学上的显著差异有限。神经生理学变化显示出不确定的结果。我们的综述表明,IC 和 BFR-E 是治疗中风很有前景的临床方法,但要确定这两种方法在中风中的疗效和潜在机制,还需要进行以神经生理学机制为重点的高质量研究。我们还提供了有关未来发展方向和临床实用性的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blood flow modulation to improve motor and neurophysiological outcomes in individuals with stroke: a scoping review.

Ischemic Conditioning (IC) is a procedure involving brief periods of occlusion followed by reperfusion in stationary limbs. Blood Flow Restriction with Exercise (BFR-E) is a technique comprising blood flow restriction during aerobic or resistance exercise. Both IC and BFR-E are Blood Flow Modulation (BFM) strategies that have shown promise across various health domains and are clinically relevant for stroke rehabilitation. Despite their potential benefits, our knowledge on the application and efficacy of either intervention in stroke is limited. This scoping review aims to synthesize the existing literature on the impact of IC and BFR-E on motor and neurophysiological outcomes in individuals post-stroke. Evidence from five studies displayed enhancements in paretic leg strength, gait speed, and paretic leg fatiguability after IC. Additionally, BFR-E led to improvements in clinical performance, gait parameters, and serum lactate levels. While trends toward motor function improvement were observed post-intervention, statistically significant differences were limited. Neurophysiological changes showed inconclusive results. Our review suggests that IC and BFR-E are promising clinical approaches in stroke, however high-quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of both in stroke. Recommendations regarding future directions and clinical utility are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Synchronization of auditory-hand tapping coupling: the effect of aging. The roles of vision and proprioception in spatial tuning of sensory attenuation. Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning. The role of muscle synergies and task constraints on upper limb motor impairment after stroke. The link between eye movements and cognitive function in mild to moderate Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1