{"title":"综合生物信息学揭示了内脏肥胖与子宫肿瘤之间的遗传联系。","authors":"Swayamprabha Samantaray, Nidhi Joshi, Shrinal Vasa, Shan Shibu, Aditi Kaloni, Bhavin Parekh, Anupama Modi","doi":"10.1007/s00438-024-02184-9","DOIUrl":null,"url":null,"abstract":"<p><p>Visceral obesity (VO), characterized by excess fat around internal organs, is a recognized risk factor for gynecological tumors, including benign uterine leiomyoma (ULM) and malignant uterine leiomyosarcoma (ULS). Despite this association, the shared molecular mechanisms remain underexplored. This study utilizes an integrated bioinformatics approach to elucidate common molecular pathways and identify potential therapeutic targets linking VO, ULM, and ULS. We analyzed gene expression datasets from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) in each condition. We found 101, 145, and 18 DEGs in VO, ULM, and ULS, respectively, with 37 genes overlapping across all three conditions. Functional enrichment analysis revealed that these overlapping DEGs were significantly enriched in pathways related to cell proliferation, immune response, and transcriptional regulation, suggesting shared biological processes. Protein-protein interaction network analysis identified 14 hub genes, of which TOP2A, APOE, and TYMS showed significant differential expression across all three conditions. Drug-gene interaction analysis identified 26 FDA-approved drugs targeting these hub genes, highlighting potential therapeutic opportunities. In conclusion, this study uncovers shared molecular pathways and actionable drug targets across VO, ULM, and ULS. These findings deepen our understanding of disease etiology and offer promising avenues for drug repurposing. Experimental validation is needed to translate these insights into clinical applications and innovative treatments.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated bioinformatics reveals genetic links between visceral obesity and uterine tumors.\",\"authors\":\"Swayamprabha Samantaray, Nidhi Joshi, Shrinal Vasa, Shan Shibu, Aditi Kaloni, Bhavin Parekh, Anupama Modi\",\"doi\":\"10.1007/s00438-024-02184-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visceral obesity (VO), characterized by excess fat around internal organs, is a recognized risk factor for gynecological tumors, including benign uterine leiomyoma (ULM) and malignant uterine leiomyosarcoma (ULS). Despite this association, the shared molecular mechanisms remain underexplored. This study utilizes an integrated bioinformatics approach to elucidate common molecular pathways and identify potential therapeutic targets linking VO, ULM, and ULS. We analyzed gene expression datasets from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) in each condition. We found 101, 145, and 18 DEGs in VO, ULM, and ULS, respectively, with 37 genes overlapping across all three conditions. Functional enrichment analysis revealed that these overlapping DEGs were significantly enriched in pathways related to cell proliferation, immune response, and transcriptional regulation, suggesting shared biological processes. Protein-protein interaction network analysis identified 14 hub genes, of which TOP2A, APOE, and TYMS showed significant differential expression across all three conditions. Drug-gene interaction analysis identified 26 FDA-approved drugs targeting these hub genes, highlighting potential therapeutic opportunities. In conclusion, this study uncovers shared molecular pathways and actionable drug targets across VO, ULM, and ULS. These findings deepen our understanding of disease etiology and offer promising avenues for drug repurposing. Experimental validation is needed to translate these insights into clinical applications and innovative treatments.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02184-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02184-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrated bioinformatics reveals genetic links between visceral obesity and uterine tumors.
Visceral obesity (VO), characterized by excess fat around internal organs, is a recognized risk factor for gynecological tumors, including benign uterine leiomyoma (ULM) and malignant uterine leiomyosarcoma (ULS). Despite this association, the shared molecular mechanisms remain underexplored. This study utilizes an integrated bioinformatics approach to elucidate common molecular pathways and identify potential therapeutic targets linking VO, ULM, and ULS. We analyzed gene expression datasets from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) in each condition. We found 101, 145, and 18 DEGs in VO, ULM, and ULS, respectively, with 37 genes overlapping across all three conditions. Functional enrichment analysis revealed that these overlapping DEGs were significantly enriched in pathways related to cell proliferation, immune response, and transcriptional regulation, suggesting shared biological processes. Protein-protein interaction network analysis identified 14 hub genes, of which TOP2A, APOE, and TYMS showed significant differential expression across all three conditions. Drug-gene interaction analysis identified 26 FDA-approved drugs targeting these hub genes, highlighting potential therapeutic opportunities. In conclusion, this study uncovers shared molecular pathways and actionable drug targets across VO, ULM, and ULS. These findings deepen our understanding of disease etiology and offer promising avenues for drug repurposing. Experimental validation is needed to translate these insights into clinical applications and innovative treatments.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.