A M Bâ, S Séne, M Manokari, M M Bullaín Galardis, S N Sylla, M A Selosse, M S Shekhawat
{"title":"与 Scleroderma Bermudense Coker 相关联的 Coccoloba uvifera L.:用于恢复退化沿海沙丘的泛热带外生菌根共生关系。","authors":"A M Bâ, S Séne, M Manokari, M M Bullaín Galardis, S N Sylla, M A Selosse, M S Shekhawat","doi":"10.1007/s00572-024-01170-8","DOIUrl":null,"url":null,"abstract":"<p><p>Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO<sub>2</sub>, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"375-389"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604829/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes.\",\"authors\":\"A M Bâ, S Séne, M Manokari, M M Bullaín Galardis, S N Sylla, M A Selosse, M S Shekhawat\",\"doi\":\"10.1007/s00572-024-01170-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO<sub>2</sub>, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\" \",\"pages\":\"375-389\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01170-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01170-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Coccoloba uvifera L.(蓼科),又名海葡萄,是一种外生菌根(ECM)加勒比海滩树种,泛热带引种用于稳定沿海土壤和生产食用果实。这篇综述介绍了海葡萄在泛热带地区的分布和微繁殖情况,以及在其原产地和引进地区的遗传多样性、功能特征和利用 ECM 共生物应对盐度的情况。研究发现,在海葡萄原产地,与海葡萄相关的 ECM 真菌多样性相对较低,主要的真菌种类是 Scleroderma bermudense Coker。在引进地区,海葡萄主要与硬皮真菌相关,而 S. bermudense 只在留尼汪和塞内加尔被发现。S. bermudense 很可能是通过附着在海葡萄种皮上的孢子传入的,这表明 S. bermudense 在海葡萄中的 ECM 定殖是垂直传播的。这种 ECM 真菌通过降低 Na 浓度、提高 K 和 Ca 含量来增强海葡萄幼苗的耐盐能力,从而促进 ECM 幼苗组织中的 K/Na 和 Ca/Na 比率高于苗圃条件下的非 ECM 植物。此外,ECM 共生还对生长、光合作用和蒸腾速率、叶绿素荧光和含量、气孔导度、细胞间 CO2 和水分状况产生了积极影响,从而改善了 ECM 海葡萄在种植条件下承受盐胁迫的表现。海葡萄微繁殖标准化是在育苗和种植条件下繁殖同质植物材料的重要工具。本综述还探讨了利用海葡萄与 S. bermudense 之间的 ECM 共生关系作为恢复加勒比海、印度洋和西非地区退化的沿海生态系统的策略。
Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes.
Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.