{"title":"辅助放射治疗对成年原发性脑肿瘤患者认知和生活质量的早期区域特异性影响。","authors":"Beatriz Gutiérrez-García, Cynthia M Cáceres, Fidel Núñez-Marín, Jaume Molero, Lluis Prats, Neus Mestre, Silvia Martínez, Pilar Teixidor, Silvia Comas, Carme Balañà, Salvador Villà","doi":"10.1007/s12094-024-03740-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment.</p><p><strong>Methods/patients: </strong>Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response.</p><p><strong>Results: </strong>The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation.</p><p><strong>Conclusions: </strong>There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors.\",\"authors\":\"Beatriz Gutiérrez-García, Cynthia M Cáceres, Fidel Núñez-Marín, Jaume Molero, Lluis Prats, Neus Mestre, Silvia Martínez, Pilar Teixidor, Silvia Comas, Carme Balañà, Salvador Villà\",\"doi\":\"10.1007/s12094-024-03740-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment.</p><p><strong>Methods/patients: </strong>Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response.</p><p><strong>Results: </strong>The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation.</p><p><strong>Conclusions: </strong>There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.</p>\",\"PeriodicalId\":50685,\"journal\":{\"name\":\"Clinical & Translational Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12094-024-03740-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-024-03740-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors.
Purpose: While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment.
Methods/patients: Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response.
Results: The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation.
Conclusions: There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.
期刊介绍:
Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.