Taha, Sharareh Eskandari, Valentin A. Slesarenko, Thomas Haselhorst, Evgeny A. Semchenko , Kate L. Seib
{"title":"淋病奈瑟菌 NHBA 和 MetQ 候选疫苗的改进和优化。","authors":"Taha, Sharareh Eskandari, Valentin A. Slesarenko, Thomas Haselhorst, Evgeny A. Semchenko , Kate L. Seib","doi":"10.1016/j.vaccine.2024.126416","DOIUrl":null,"url":null,"abstract":"<div><div><em>Neisseria gonorrhoeae</em> has a significant impact on reproductive health with an estimated 82 million new cases of infection per year worldwide. Due to the ongoing emergence of multidrug-resistant <em>N. gonorrhoeae</em> strains<em>,</em> the high number of asymptomatic cases, and the risk of disease sequelae, the development of a gonococcal vaccine is urgently needed. We have previously described two potential gonococcal vaccine antigens, cNHBA (C-terminal fragment of the Neisseria Heparin Binding Antigen) and MetQ (methionine-binding protein). This study aimed to optimise these antigens for improved immune responses and to facilitate vaccine production, by investigating cNHBA fusions with the full-length MetQ protein or N-terminal and C-terminal MetQ fragments (Met1 and Met2, respectively) adjuvanted with aluminium hydroxide. The cNHBA and MetQ fragments and fusion antigens were all immunogenic in mice, generating a predominantly IgG1 response. Antibodies mediated bacterial killing <em>via</em> both serum bactericidal activity (SBA) and opsonophagocytic activity (OPA), and reduced adherence to cervical and urethral epithelial cells. Among the antigen fusions tested, MetQ-cNHBA and cNHBA-Met2 generated the highest SBA, OPA and adherence blocking titres and are proposed as promising optimised antigens for <em>N. gonorrhoeae</em> vaccine development.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"42 26","pages":"Article 126416"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement and optimisation of Neisseria gonorrhoeae NHBA and MetQ vaccine candidates\",\"authors\":\"Taha, Sharareh Eskandari, Valentin A. Slesarenko, Thomas Haselhorst, Evgeny A. Semchenko , Kate L. Seib\",\"doi\":\"10.1016/j.vaccine.2024.126416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Neisseria gonorrhoeae</em> has a significant impact on reproductive health with an estimated 82 million new cases of infection per year worldwide. Due to the ongoing emergence of multidrug-resistant <em>N. gonorrhoeae</em> strains<em>,</em> the high number of asymptomatic cases, and the risk of disease sequelae, the development of a gonococcal vaccine is urgently needed. We have previously described two potential gonococcal vaccine antigens, cNHBA (C-terminal fragment of the Neisseria Heparin Binding Antigen) and MetQ (methionine-binding protein). This study aimed to optimise these antigens for improved immune responses and to facilitate vaccine production, by investigating cNHBA fusions with the full-length MetQ protein or N-terminal and C-terminal MetQ fragments (Met1 and Met2, respectively) adjuvanted with aluminium hydroxide. The cNHBA and MetQ fragments and fusion antigens were all immunogenic in mice, generating a predominantly IgG1 response. Antibodies mediated bacterial killing <em>via</em> both serum bactericidal activity (SBA) and opsonophagocytic activity (OPA), and reduced adherence to cervical and urethral epithelial cells. Among the antigen fusions tested, MetQ-cNHBA and cNHBA-Met2 generated the highest SBA, OPA and adherence blocking titres and are proposed as promising optimised antigens for <em>N. gonorrhoeae</em> vaccine development.</div></div>\",\"PeriodicalId\":23491,\"journal\":{\"name\":\"Vaccine\",\"volume\":\"42 26\",\"pages\":\"Article 126416\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264410X24010983\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X24010983","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
淋病奈瑟菌对生殖健康有重大影响,估计全球每年新增感染病例 8,200 万例。由于耐多药淋球菌菌株的不断出现、无症状病例的大量出现以及疾病后遗症的风险,淋球菌疫苗的开发迫在眉睫。我们以前曾描述过两种潜在的淋球菌疫苗抗原:cNHBA(奈瑟氏肝素结合抗原的 C 端片段)和 MetQ(蛋氨酸结合蛋白)。本研究旨在通过研究 cNHBA 与全长 MetQ 蛋白或氢氧化铝佐剂的 N 端和 C 端 MetQ 片段(分别为 Met1 和 Met2)的融合,优化这些抗原以提高免疫反应并促进疫苗生产。cNHBA 和 MetQ 片段以及融合抗原对小鼠都有免疫原性,主要产生 IgG1 反应。抗体通过血清杀菌活性(SBA)和嗜酸性细胞吞噬活性(OPA)介导杀灭细菌,并减少对宫颈和尿道上皮细胞的粘附。在测试的抗原融合物中,MetQ-cNHBA 和 cNHBA-Met2 产生的 SBA、OPA 和粘附阻断滴度最高,因此被建议作为淋球菌疫苗开发的有前途的优化抗原。
Refinement and optimisation of Neisseria gonorrhoeae NHBA and MetQ vaccine candidates
Neisseria gonorrhoeae has a significant impact on reproductive health with an estimated 82 million new cases of infection per year worldwide. Due to the ongoing emergence of multidrug-resistant N. gonorrhoeae strains, the high number of asymptomatic cases, and the risk of disease sequelae, the development of a gonococcal vaccine is urgently needed. We have previously described two potential gonococcal vaccine antigens, cNHBA (C-terminal fragment of the Neisseria Heparin Binding Antigen) and MetQ (methionine-binding protein). This study aimed to optimise these antigens for improved immune responses and to facilitate vaccine production, by investigating cNHBA fusions with the full-length MetQ protein or N-terminal and C-terminal MetQ fragments (Met1 and Met2, respectively) adjuvanted with aluminium hydroxide. The cNHBA and MetQ fragments and fusion antigens were all immunogenic in mice, generating a predominantly IgG1 response. Antibodies mediated bacterial killing via both serum bactericidal activity (SBA) and opsonophagocytic activity (OPA), and reduced adherence to cervical and urethral epithelial cells. Among the antigen fusions tested, MetQ-cNHBA and cNHBA-Met2 generated the highest SBA, OPA and adherence blocking titres and are proposed as promising optimised antigens for N. gonorrhoeae vaccine development.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.