{"title":"在高紫外线 B 环境中,色素是否能为双壳轮虫提供保护?","authors":"Maribel J. Baeza, Elizabeth J. Walsh","doi":"10.1002/lno.12710","DOIUrl":null,"url":null,"abstract":"Aquatic species found in habitats with limited shade and little dissolved organic carbon (DOC) have increased vulnerability to ultraviolet radiation (UVR) damage. Pigmentation is a common mechanism used by animals for protection from UVR. A pigmented bdelloid rotifer, <jats:italic>Philodina</jats:italic>, occurs in high densities in shallow rock pools in El Paso Co., TX, and is subject to repeated desiccation and high UVR. To understand the roles of DOC, pigmentation, and dormancy in reducing the effects of UVR exposure in these rotifers: (1) DOC levels in rock pools were measured before and after the summer monsoon season and (2) hydrated or dormant bdelloids (desiccated for 0, 1, 7, or 32 d) that differed in degree of pigmentation (highly, moderately, lightly, and none) were exposed to three intensities of UVB radiation (low, mid, or high) and monitored for survival after 48 h. Pigmented bdelloids were found in rock pools with lower DOC concentrations. Logistic regression analysis indicated that pigmentation level, desiccation time, and UVB intensity all affected survival. Bdelloids in the dormant form for 1 d were more resistant to UVB exposure at all pigmentation levels. However, as desiccation time increased, the odds of surviving decreased. Hydrated highly pigmented bdelloids were three times more likely to survive desiccation, UVB radiation, and their combined effects. Prolonged periods of drought due to the changing climate will alter DOC concentrations, causing photoprotection to become an increasingly important survival strategy for aquatic invertebrates, especially those inhabiting shallow waters.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does pigmentation provide protection to bdelloid rotifers in a high ultraviolet B environment?\",\"authors\":\"Maribel J. Baeza, Elizabeth J. Walsh\",\"doi\":\"10.1002/lno.12710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aquatic species found in habitats with limited shade and little dissolved organic carbon (DOC) have increased vulnerability to ultraviolet radiation (UVR) damage. Pigmentation is a common mechanism used by animals for protection from UVR. A pigmented bdelloid rotifer, <jats:italic>Philodina</jats:italic>, occurs in high densities in shallow rock pools in El Paso Co., TX, and is subject to repeated desiccation and high UVR. To understand the roles of DOC, pigmentation, and dormancy in reducing the effects of UVR exposure in these rotifers: (1) DOC levels in rock pools were measured before and after the summer monsoon season and (2) hydrated or dormant bdelloids (desiccated for 0, 1, 7, or 32 d) that differed in degree of pigmentation (highly, moderately, lightly, and none) were exposed to three intensities of UVB radiation (low, mid, or high) and monitored for survival after 48 h. Pigmented bdelloids were found in rock pools with lower DOC concentrations. Logistic regression analysis indicated that pigmentation level, desiccation time, and UVB intensity all affected survival. Bdelloids in the dormant form for 1 d were more resistant to UVB exposure at all pigmentation levels. However, as desiccation time increased, the odds of surviving decreased. Hydrated highly pigmented bdelloids were three times more likely to survive desiccation, UVB radiation, and their combined effects. Prolonged periods of drought due to the changing climate will alter DOC concentrations, causing photoprotection to become an increasingly important survival strategy for aquatic invertebrates, especially those inhabiting shallow waters.\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/lno.12710\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12710","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在遮荫有限、溶解有机碳(DOC)较少的生境中发现的水生物种更容易受到紫外线辐射(UVR)的伤害。色素沉积是动物抵御紫外线的一种常见机制。德克萨斯州埃尔帕索(El Paso Co., TX)的一种色素双壳轮虫(Philodina)高密度分布于浅岩水池中,反复遭受干燥和高紫外线辐射。为了了解 DOC、色素和休眠在减少紫外线照射对这些轮虫的影响方面所起的作用,我们进行了以下研究:(1)在夏季季风季节前后测量岩池中的 DOC 含量;(2)将水合或休眠轮虫(干燥 0、1、7 或 32 d)暴露于三种紫外线辐射强度(低、中或高)下,并在 48 h 后监测其存活情况,这些轮虫的色素程度各不相同(高度、中度、轻度和无)。逻辑回归分析表明,色素水平、干燥时间和紫外线强度都会影响存活率。在所有色素水平下,休眠 1 d 的贝类对紫外线照射的抵抗力都更强。然而,随着干燥时间的延长,存活几率也在下降。水合色素较高的贝类在干燥、紫外线辐射及其综合影响下存活的几率要高出三倍。气候变化导致的长期干旱将改变溶解氧浓度,使光照保护成为水生无脊椎动物(尤其是栖息在浅水区的无脊椎动物)越来越重要的生存策略。
Does pigmentation provide protection to bdelloid rotifers in a high ultraviolet B environment?
Aquatic species found in habitats with limited shade and little dissolved organic carbon (DOC) have increased vulnerability to ultraviolet radiation (UVR) damage. Pigmentation is a common mechanism used by animals for protection from UVR. A pigmented bdelloid rotifer, Philodina, occurs in high densities in shallow rock pools in El Paso Co., TX, and is subject to repeated desiccation and high UVR. To understand the roles of DOC, pigmentation, and dormancy in reducing the effects of UVR exposure in these rotifers: (1) DOC levels in rock pools were measured before and after the summer monsoon season and (2) hydrated or dormant bdelloids (desiccated for 0, 1, 7, or 32 d) that differed in degree of pigmentation (highly, moderately, lightly, and none) were exposed to three intensities of UVB radiation (low, mid, or high) and monitored for survival after 48 h. Pigmented bdelloids were found in rock pools with lower DOC concentrations. Logistic regression analysis indicated that pigmentation level, desiccation time, and UVB intensity all affected survival. Bdelloids in the dormant form for 1 d were more resistant to UVB exposure at all pigmentation levels. However, as desiccation time increased, the odds of surviving decreased. Hydrated highly pigmented bdelloids were three times more likely to survive desiccation, UVB radiation, and their combined effects. Prolonged periods of drought due to the changing climate will alter DOC concentrations, causing photoprotection to become an increasingly important survival strategy for aquatic invertebrates, especially those inhabiting shallow waters.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.