Jia-Le Lu, Su-Yu Liu, Liang Zou, Kui Zhang, Chang Liu, Guo-Xing Li, Qing Li, Su Chen
{"title":"通过稳健的多通道微流体-电纺丝方法制备氧化石墨烯-多巴胺负载均匀纤维膜","authors":"Jia-Le Lu, Su-Yu Liu, Liang Zou, Kui Zhang, Chang Liu, Guo-Xing Li, Qing Li, Su Chen","doi":"10.1016/j.seppur.2024.130014","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of modern industries has caused serious water pollution such as dyes wastewater, which brings environmental problems and threatens human health. Thus, methods allowing efficient dyes removal from wastewater are substantially desirable. In this work, we fabricated graphene oxide-polydopamine (GO-PDA) by microfluidics, which enables rapid synthesis of products with excellent uniformity due to the precise control of reaction conditions. In addition, the GO-PDA/ thermoplastic polyurethane (GO-PDA/TPU) composite fibrous membrane was prepared in a high-efficiency manner by microfluidic electrospinning with a four-channel chip. Interestingly, GO-PDA not only improves the mechanical strength and hydrophilicity of the composite fibrous membrane, but also endows the membrane with efficient dye adsorption and separation capacity both for single and mixed dyes. It has been proved that the GO-PDA/TPU composite fibrous membrane exhibits selectivity towards cationic dyes, where the removal efficiency is up to 99 wt%. Moreover, the fibrous membrane could be utilized in a continuous and cyclic manner, which still maintains a high adsorption rate (>95 wt%) after 5 recycling, illustrating outstanding durability and reusability. This work proposes an efficient GO-PDA/TPU composite fibrous membrane towards selective adsorption of cationic dyes, which is of great significance in wastewater purification.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"357 ","pages":"Article 130014"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide-polydopamine loaded uniform fibrous membranes via robust multi-channel microfluidic-electrospinning method\",\"authors\":\"Jia-Le Lu, Su-Yu Liu, Liang Zou, Kui Zhang, Chang Liu, Guo-Xing Li, Qing Li, Su Chen\",\"doi\":\"10.1016/j.seppur.2024.130014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid development of modern industries has caused serious water pollution such as dyes wastewater, which brings environmental problems and threatens human health. Thus, methods allowing efficient dyes removal from wastewater are substantially desirable. In this work, we fabricated graphene oxide-polydopamine (GO-PDA) by microfluidics, which enables rapid synthesis of products with excellent uniformity due to the precise control of reaction conditions. In addition, the GO-PDA/ thermoplastic polyurethane (GO-PDA/TPU) composite fibrous membrane was prepared in a high-efficiency manner by microfluidic electrospinning with a four-channel chip. Interestingly, GO-PDA not only improves the mechanical strength and hydrophilicity of the composite fibrous membrane, but also endows the membrane with efficient dye adsorption and separation capacity both for single and mixed dyes. It has been proved that the GO-PDA/TPU composite fibrous membrane exhibits selectivity towards cationic dyes, where the removal efficiency is up to 99 wt%. Moreover, the fibrous membrane could be utilized in a continuous and cyclic manner, which still maintains a high adsorption rate (>95 wt%) after 5 recycling, illustrating outstanding durability and reusability. This work proposes an efficient GO-PDA/TPU composite fibrous membrane towards selective adsorption of cationic dyes, which is of great significance in wastewater purification.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"357 \",\"pages\":\"Article 130014\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624037535\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624037535","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The rapid development of modern industries has caused serious water pollution such as dyes wastewater, which brings environmental problems and threatens human health. Thus, methods allowing efficient dyes removal from wastewater are substantially desirable. In this work, we fabricated graphene oxide-polydopamine (GO-PDA) by microfluidics, which enables rapid synthesis of products with excellent uniformity due to the precise control of reaction conditions. In addition, the GO-PDA/ thermoplastic polyurethane (GO-PDA/TPU) composite fibrous membrane was prepared in a high-efficiency manner by microfluidic electrospinning with a four-channel chip. Interestingly, GO-PDA not only improves the mechanical strength and hydrophilicity of the composite fibrous membrane, but also endows the membrane with efficient dye adsorption and separation capacity both for single and mixed dyes. It has been proved that the GO-PDA/TPU composite fibrous membrane exhibits selectivity towards cationic dyes, where the removal efficiency is up to 99 wt%. Moreover, the fibrous membrane could be utilized in a continuous and cyclic manner, which still maintains a high adsorption rate (>95 wt%) after 5 recycling, illustrating outstanding durability and reusability. This work proposes an efficient GO-PDA/TPU composite fibrous membrane towards selective adsorption of cationic dyes, which is of great significance in wastewater purification.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.