主动学习具有量子力学精度的波尔兹曼采样器和势能。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-10-22 Epub Date: 2024-10-06 DOI:10.1021/acs.jctc.4c00506
Ana Molina-Taborda, Pilar Cossio, Olga Lopez-Acevedo, Marylou Gabrié
{"title":"主动学习具有量子力学精度的波尔兹曼采样器和势能。","authors":"Ana Molina-Taborda, Pilar Cossio, Olga Lopez-Acevedo, Marylou Gabrié","doi":"10.1021/acs.jctc.4c00506","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting consistent statistics between relevant free energy minima of a molecular system is essential for physics, chemistry, and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we developed an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one normalizing flow (NF) and one MLP per state, achieving rapid convergence toward the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free energy differences and optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster belonging to a set of systems with diverse applications in the fields of medicine and catalysis.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning of Boltzmann Samplers and Potential Energies with Quantum Mechanical Accuracy.\",\"authors\":\"Ana Molina-Taborda, Pilar Cossio, Olga Lopez-Acevedo, Marylou Gabrié\",\"doi\":\"10.1021/acs.jctc.4c00506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracting consistent statistics between relevant free energy minima of a molecular system is essential for physics, chemistry, and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we developed an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one normalizing flow (NF) and one MLP per state, achieving rapid convergence toward the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free energy differences and optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster belonging to a set of systems with diverse applications in the fields of medicine and catalysis.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00506\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00506","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提取分子系统相关自由能最小值之间的一致统计数据对于物理学、化学和生物学至关重要。分子动力学(MD)模拟可以帮助完成这项任务,但计算成本高昂,尤其是对于需要量子精度的系统。为了克服这一难题,我们开发了一种将增强采样与深度生成模型和机器学习势能(MLP)主动学习相结合的方法。我们引入了一种自适应马尔科夫链蒙特卡洛框架,该框架可对每个状态训练一个归一化流(NF)和一个 MLP,从而实现向玻尔兹曼分布的快速收敛。利用训练好的 NF 和 MLP 模型,我们可以计算自由能差和光学光谱等热力学观测值。我们将这种方法应用于研究超小银纳米团簇的异构化,该纳米团簇属于一组在医药和催化领域具有多种应用的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Learning of Boltzmann Samplers and Potential Energies with Quantum Mechanical Accuracy.

Extracting consistent statistics between relevant free energy minima of a molecular system is essential for physics, chemistry, and biology. Molecular dynamics (MD) simulations can aid in this task but are computationally expensive, especially for systems that require quantum accuracy. To overcome this challenge, we developed an approach combining enhanced sampling with deep generative models and active learning of a machine learning potential (MLP). We introduce an adaptive Markov chain Monte Carlo framework that enables the training of one normalizing flow (NF) and one MLP per state, achieving rapid convergence toward the Boltzmann distribution. Leveraging the trained NF and MLP models, we compute thermodynamic observables such as free energy differences and optical spectra. We apply this method to study the isomerization of an ultrasmall silver nanocluster belonging to a set of systems with diverse applications in the fields of medicine and catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1