锥虫体内 EVs 的生物生成。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Current topics in membranes Pub Date : 2024-01-01 Epub Date: 2024-09-07 DOI:10.1016/bs.ctm.2024.06.004
Nadjania Saraiva De Lira Silva, Sergio Schenkman
{"title":"锥虫体内 EVs 的生物生成。","authors":"Nadjania Saraiva De Lira Silva, Sergio Schenkman","doi":"10.1016/bs.ctm.2024.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"49-83"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenesis of EVs in Trypanosomatids.\",\"authors\":\"Nadjania Saraiva De Lira Silva, Sergio Schenkman\",\"doi\":\"10.1016/bs.ctm.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":\"94 \",\"pages\":\"49-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2024.06.004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2024.06.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

锥虫是原生动物寄生虫,是恰加斯病、非洲锥虫病和利什曼病等人类疾病的元凶。这些生物在各种环境中生长,表现出多个形态阶段,同时调整其表面成分。它们广泛获取和释放物质,以获取营养并处理与细胞外环境的相互作用。它们通过膜转运和内吞作用获取和利用蛋白质、脂类和碳水化合物以促进生长。内吞作用通过不同的膜区域进行,这些区域被称为鞭毛袋和细胞寄生体,具体取决于寄生虫的种类及其发育阶段。有些寄生虫会建立复杂的内吞系统来储存或分解吸收的物质。与此相反,膜运输可通过质膜上的特定受体吸收氨基酸、碳水化合物和铁等小分子物质。与此同时,这些寄生虫还以可溶的形式或包裹在细胞外囊泡中分泌各种分子,如蛋白质、酶、核酸和糖结合物,这对它们的寄生行为有很大的帮助。这些活动需要通过某些膜域(如鞭毛、鞭毛袋和质膜)的分泌途径进行外排,而这些膜域在不同的发育阶段受到控制。本章将讨论内吞和外吞机制的主要特征以及所涉及的细胞器,并讨论它们与Tritryp物种中外泌体和胞外囊泡的形成之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogenesis of EVs in Trypanosomatids.

Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current topics in membranes
Current topics in membranes 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.
期刊最新文献
How has the evolution of our understanding of the compartmentalization of sphingolipid biosynthesis over the past 30 years altered our view of the evolution of the pathway? Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model. Impact of coat protein on evolution of ilarviruses. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. Preface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1