利用翼腭动脉结扎和细丝优化技术对 C57BL/6 小鼠大脑中动脉区域进行可靠的梗塞治疗--PURE-MCAo 模型。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-10-07 DOI:10.1177/0271678X241281841
Sodai Yoshimura, Maximilian Dorok, Uta Mamrak, Antonia Wehn, Eva Krestel, Igor Khalin, Nikolaus Plesnila
{"title":"利用翼腭动脉结扎和细丝优化技术对 C57BL/6 小鼠大脑中动脉区域进行可靠的梗塞治疗--PURE-MCAo 模型。","authors":"Sodai Yoshimura, Maximilian Dorok, Uta Mamrak, Antonia Wehn, Eva Krestel, Igor Khalin, Nikolaus Plesnila","doi":"10.1177/0271678X241281841","DOIUrl":null,"url":null,"abstract":"<p><p>Current techniques for inducing intraluminal filamentous middle cerebral artery occlusion (fMCAo) in mice produce highly variable results and often cause additional infarcts in the posterior cerebral artery (PCA) territory. The aim of the current study was to develop a novel procedure to overcome these shortcomings. Male C57BL/6 mice were subjected to 60 min of fMCAo with cerebral blood flow monitored by laser Doppler flowmetry. The influence of the length of the occlusion filament coating and the combination of common carotid artery (CCA) or pterygopalatine artery (PPA) ligation on lesion volume and functional outcome 24 h after reperfusion was evaluated. The use of appropriate filament and PPA ligation while maintaining CCA perfusion prevented the development of infarcts in the PCA area, resulted in pure MCA infarcts (68.3 ± 14.5 mm<sup>3</sup>) and reduced the variability of infarct volumes by more than half (from 26-38% to 14% standard deviation/mean). Using an improved fMCAo procedure, we were able to produce <u>P</u>CA area-<u>u</u>naffected <u>re</u>producible (PURE) infarcts exclusively in the MCA territory. Thus PURE-MCAo reduced outcome variability by more than 50%. Our results may thus help to reduce the number of animals in preclinical stroke research and to increase the reproducibility of the fMCAo model.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241281841"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563556/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliable infarction of the middle cerebral artery territory in C57BL/6 mice using pterygopalatine artery ligation and filament optimization - The PURE-MCAo model.\",\"authors\":\"Sodai Yoshimura, Maximilian Dorok, Uta Mamrak, Antonia Wehn, Eva Krestel, Igor Khalin, Nikolaus Plesnila\",\"doi\":\"10.1177/0271678X241281841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current techniques for inducing intraluminal filamentous middle cerebral artery occlusion (fMCAo) in mice produce highly variable results and often cause additional infarcts in the posterior cerebral artery (PCA) territory. The aim of the current study was to develop a novel procedure to overcome these shortcomings. Male C57BL/6 mice were subjected to 60 min of fMCAo with cerebral blood flow monitored by laser Doppler flowmetry. The influence of the length of the occlusion filament coating and the combination of common carotid artery (CCA) or pterygopalatine artery (PPA) ligation on lesion volume and functional outcome 24 h after reperfusion was evaluated. The use of appropriate filament and PPA ligation while maintaining CCA perfusion prevented the development of infarcts in the PCA area, resulted in pure MCA infarcts (68.3 ± 14.5 mm<sup>3</sup>) and reduced the variability of infarct volumes by more than half (from 26-38% to 14% standard deviation/mean). Using an improved fMCAo procedure, we were able to produce <u>P</u>CA area-<u>u</u>naffected <u>re</u>producible (PURE) infarcts exclusively in the MCA territory. Thus PURE-MCAo reduced outcome variability by more than 50%. Our results may thus help to reduce the number of animals in preclinical stroke research and to increase the reproducibility of the fMCAo model.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X241281841\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241281841\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0271678X241281841","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目前诱导小鼠腔内丝状大脑中动脉闭塞(fMCAo)的技术产生的结果差异很大,而且往往会造成大脑后动脉(PCA)区域的额外梗死。本研究旨在开发一种新的程序来克服这些缺点。对雄性 C57BL/6 小鼠进行 60 分钟 fMCAo,并通过激光多普勒血流测量仪监测脑血流。评估了闭塞丝膜的长度以及颈总动脉(CCA)或翼腭动脉(PPA)结扎的组合对病变体积和再灌注 24 小时后功能结果的影响。在维持CCA灌注的同时,使用适当的丝状动脉和PPA结扎可防止PCA区域发生梗死,导致纯MCA梗死(68.3 ± 14.5 mm3),并将梗死体积的变异性降低一半以上(从26-38%降至14%的标准偏差/平均值)。利用改进的 fMCAo 程序,我们能够完全在 MCA 区域产生 PCA 区域未受影响的可重复梗死(PURE)。因此,PURE-MCAo 将结果变异性降低了 50% 以上。因此,我们的研究结果可能有助于减少临床前中风研究中的动物数量,并提高 fMCAo 模型的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliable infarction of the middle cerebral artery territory in C57BL/6 mice using pterygopalatine artery ligation and filament optimization - The PURE-MCAo model.

Current techniques for inducing intraluminal filamentous middle cerebral artery occlusion (fMCAo) in mice produce highly variable results and often cause additional infarcts in the posterior cerebral artery (PCA) territory. The aim of the current study was to develop a novel procedure to overcome these shortcomings. Male C57BL/6 mice were subjected to 60 min of fMCAo with cerebral blood flow monitored by laser Doppler flowmetry. The influence of the length of the occlusion filament coating and the combination of common carotid artery (CCA) or pterygopalatine artery (PPA) ligation on lesion volume and functional outcome 24 h after reperfusion was evaluated. The use of appropriate filament and PPA ligation while maintaining CCA perfusion prevented the development of infarcts in the PCA area, resulted in pure MCA infarcts (68.3 ± 14.5 mm3) and reduced the variability of infarct volumes by more than half (from 26-38% to 14% standard deviation/mean). Using an improved fMCAo procedure, we were able to produce PCA area-unaffected reproducible (PURE) infarcts exclusively in the MCA territory. Thus PURE-MCAo reduced outcome variability by more than 50%. Our results may thus help to reduce the number of animals in preclinical stroke research and to increase the reproducibility of the fMCAo model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Cerebral microvascular physiology associated with white matter lesion burden differs by level of vascular risk in typically aging older adults. Associations of life-course cardiovascular risk factors with late-life cerebral haemodynamics. Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1