{"title":"基于寡核苷酸干扰PCR(ORNi-PCR)的方法高灵敏、准确地检测ALK-TKI耐药突变。","authors":"Chiori Tabe , Toshitsugu Fujita , Kageaki Taima , Hisashi Tanaka , Tomonori Makiguchi , Masamichi Itoga , Yoshiko Ishioka , Sadatomo Tasaka , Hodaka Fujii","doi":"10.1016/j.lungcan.2024.107969","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) are treated with ALK tyrosine kinase inhibitors (TKIs). Although most patients benefit from ALK-TKIs, the development of resistance mutations is common and results in NSCLC recurrence. To identify ALK-TKI-resistant NSCLC at the early recurrent phase, highly sensitive and accurate methods for the detection of mutations are essential.</div></div><div><h3>Objective</h3><div>The aim of this study was to establish highly sensitive, accurate, cost-effective, and clinically practical methods for the detection of two frequent ALK-TKI resistance mutations, ALK G1202R and L1196M, by liquid biopsy.</div></div><div><h3>Methods</h3><div>The efficacy of oligoribonucleotide interference-PCR (ORNi-PCR) was examined by first optimizing experimental conditions to specifically amplify the ALK-TKI resistance mutant DNA corresponding to ALK G1202R and L1196M mutations. ORNi-PCR was then combined with droplet digital PCR (ddPCR) or real-time PCR to detect these mutations in cell-free DNA (cfDNA) extracted from NSCLC patients.</div></div><div><h3>Results</h3><div>ORNi-PCR followed by ddPCR/real-time PCR detected 1–10 copy(s) of G1202R and L1196M DNA in model cfDNA. These mutations in patients’ cfDNA were identified using ORNi-PCR-based methods, whereas conventional ddPCR failed to detect them.</div></div><div><h3>Conclusion</h3><div>ORNi-PCR followed by ddPCR/real-time PCR enables highly sensitive and accurate detection of <em>ALK</em> mutations by liquid biopsy. Although the clinical data are limited, our results show that these methods are potentially useful for identifying ALK-TKI-resistant NSCLC at the early recurrent phase.</div></div>","PeriodicalId":18129,"journal":{"name":"Lung Cancer","volume":"197 ","pages":"Article 107969"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive and accurate detection of ALK-TKI resistance mutations by oligoribonucleotide interference-PCR (ORNi-PCR)-based methods\",\"authors\":\"Chiori Tabe , Toshitsugu Fujita , Kageaki Taima , Hisashi Tanaka , Tomonori Makiguchi , Masamichi Itoga , Yoshiko Ishioka , Sadatomo Tasaka , Hodaka Fujii\",\"doi\":\"10.1016/j.lungcan.2024.107969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) are treated with ALK tyrosine kinase inhibitors (TKIs). Although most patients benefit from ALK-TKIs, the development of resistance mutations is common and results in NSCLC recurrence. To identify ALK-TKI-resistant NSCLC at the early recurrent phase, highly sensitive and accurate methods for the detection of mutations are essential.</div></div><div><h3>Objective</h3><div>The aim of this study was to establish highly sensitive, accurate, cost-effective, and clinically practical methods for the detection of two frequent ALK-TKI resistance mutations, ALK G1202R and L1196M, by liquid biopsy.</div></div><div><h3>Methods</h3><div>The efficacy of oligoribonucleotide interference-PCR (ORNi-PCR) was examined by first optimizing experimental conditions to specifically amplify the ALK-TKI resistance mutant DNA corresponding to ALK G1202R and L1196M mutations. ORNi-PCR was then combined with droplet digital PCR (ddPCR) or real-time PCR to detect these mutations in cell-free DNA (cfDNA) extracted from NSCLC patients.</div></div><div><h3>Results</h3><div>ORNi-PCR followed by ddPCR/real-time PCR detected 1–10 copy(s) of G1202R and L1196M DNA in model cfDNA. These mutations in patients’ cfDNA were identified using ORNi-PCR-based methods, whereas conventional ddPCR failed to detect them.</div></div><div><h3>Conclusion</h3><div>ORNi-PCR followed by ddPCR/real-time PCR enables highly sensitive and accurate detection of <em>ALK</em> mutations by liquid biopsy. Although the clinical data are limited, our results show that these methods are potentially useful for identifying ALK-TKI-resistant NSCLC at the early recurrent phase.</div></div>\",\"PeriodicalId\":18129,\"journal\":{\"name\":\"Lung Cancer\",\"volume\":\"197 \",\"pages\":\"Article 107969\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lung Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169500224005038\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169500224005038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Highly sensitive and accurate detection of ALK-TKI resistance mutations by oligoribonucleotide interference-PCR (ORNi-PCR)-based methods
Background
Patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) are treated with ALK tyrosine kinase inhibitors (TKIs). Although most patients benefit from ALK-TKIs, the development of resistance mutations is common and results in NSCLC recurrence. To identify ALK-TKI-resistant NSCLC at the early recurrent phase, highly sensitive and accurate methods for the detection of mutations are essential.
Objective
The aim of this study was to establish highly sensitive, accurate, cost-effective, and clinically practical methods for the detection of two frequent ALK-TKI resistance mutations, ALK G1202R and L1196M, by liquid biopsy.
Methods
The efficacy of oligoribonucleotide interference-PCR (ORNi-PCR) was examined by first optimizing experimental conditions to specifically amplify the ALK-TKI resistance mutant DNA corresponding to ALK G1202R and L1196M mutations. ORNi-PCR was then combined with droplet digital PCR (ddPCR) or real-time PCR to detect these mutations in cell-free DNA (cfDNA) extracted from NSCLC patients.
Results
ORNi-PCR followed by ddPCR/real-time PCR detected 1–10 copy(s) of G1202R and L1196M DNA in model cfDNA. These mutations in patients’ cfDNA were identified using ORNi-PCR-based methods, whereas conventional ddPCR failed to detect them.
Conclusion
ORNi-PCR followed by ddPCR/real-time PCR enables highly sensitive and accurate detection of ALK mutations by liquid biopsy. Although the clinical data are limited, our results show that these methods are potentially useful for identifying ALK-TKI-resistant NSCLC at the early recurrent phase.
期刊介绍:
Lung Cancer is an international publication covering the clinical, translational and basic science of malignancies of the lung and chest region.Original research articles, early reports, review articles, editorials and correspondence covering the prevention, epidemiology and etiology, basic biology, pathology, clinical assessment, surgery, chemotherapy, radiotherapy, combined treatment modalities, other treatment modalities and outcomes of lung cancer are welcome.