Nan Zhao , Chang Liu , Chenyang Ji , Xuefeng Jiang , Jinyu Zhao , Liwen Qiang , Hangbiao Jin
{"title":"多组学方法揭示了暴露于锐钛型或金红石型TiO2纳米粒子的水稻(Oryza sativa L.)在毒性和机理方面的差异。","authors":"Nan Zhao , Chang Liu , Chenyang Ji , Xuefeng Jiang , Jinyu Zhao , Liwen Qiang , Hangbiao Jin","doi":"10.1016/j.impact.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) have been widely used in agriculture, which increased the risk to soil-plant systems. Studies have demonstrated that TiO<sub>2</sub> NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO<sub>2</sub> NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (<em>Oryza sativa</em> L.) under the stress of anatase (AT) or rutile (RT) TiO<sub>2</sub> NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, <em>p</em> = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, <em>p</em> = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO<sub>2</sub> NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, <em>p</em> < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO<sub>2</sub> NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO<sub>2</sub> NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO<sub>2</sub> NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO<sub>2</sub> NPs are necessary in agricultural development to minimize toxicity risks.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"36 ","pages":"Article 100530"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO2 nanoparticles\",\"authors\":\"Nan Zhao , Chang Liu , Chenyang Ji , Xuefeng Jiang , Jinyu Zhao , Liwen Qiang , Hangbiao Jin\",\"doi\":\"10.1016/j.impact.2024.100530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) have been widely used in agriculture, which increased the risk to soil-plant systems. Studies have demonstrated that TiO<sub>2</sub> NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO<sub>2</sub> NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (<em>Oryza sativa</em> L.) under the stress of anatase (AT) or rutile (RT) TiO<sub>2</sub> NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, <em>p</em> = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, <em>p</em> = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO<sub>2</sub> NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, <em>p</em> < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO<sub>2</sub> NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO<sub>2</sub> NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO<sub>2</sub> NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO<sub>2</sub> NPs are necessary in agricultural development to minimize toxicity risks.</div></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"36 \",\"pages\":\"Article 100530\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000405\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000405","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO2 nanoparticles
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in agriculture, which increased the risk to soil-plant systems. Studies have demonstrated that TiO2 NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO2 NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (Oryza sativa L.) under the stress of anatase (AT) or rutile (RT) TiO2 NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, p = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, p = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO2 NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, p < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO2 NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO2 NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO2 NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO2 NPs are necessary in agricultural development to minimize toxicity risks.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.