Hamdullah Khadim Sheikh, Jose M Padron, Tanzila Arshad, Uzma Habib, Shahnila Jamil, Haroon Khan, Khurshid Ayub
{"title":"用于深度评估纳洛酮醇作为β-微管蛋白结合抑制剂的新动态评分法","authors":"Hamdullah Khadim Sheikh, Jose M Padron, Tanzila Arshad, Uzma Habib, Shahnila Jamil, Haroon Khan, Khurshid Ayub","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We report a new scoring method for rating the performance of ligands on same protein, using their extensive dynamic flexibility properties, binding with protein and impact on receptor protein. Based on molecular dynamics (MD), this method is more accurate than single-point energy calculations. This method identified an ideal FDA-approved drug as β-tubulin microtubule inhibitor with improved attributes compared to commercial microtubule disassembly inhibitor, Paclitaxel (PTX). We started with virtual screening (VS) of FDA-approved drugs inside PTX's binding pocket (A) of human β-tubulin protein. Screened ligands (>80% score) were evaluated for non-permeation through blood-brain barrier (BBB) as targets were body cancers, gastrointestinal absorption, Lipinski, non-efflux from central nervous system (CNS) by p-glycoprotein (Pgp), and ADMET analysis. This identified FDA-approved Naloxegol drug with superior attributes compared to PTX. Pocket (A) specific docking of chain length variable derivatives of Naloxegol gave docked poses that underwent MD run to give a range of properties and their descriptors (RMSD, RMSF, RoG, H-bonds, hydrophobic interaction and SASA). QSPR validated that MD properties dependent upon [-CH<sub>2</sub>-CH<sub>2</sub>-O-]<sub>n=0-7</sub> chain length of Naloxegol. MD data underwent normalization, PCA analysis and scoring against PTX. One Naloxegol derivative scored higher than PTX as a potential microtubule disassembly inhibitor.</p>","PeriodicalId":19971,"journal":{"name":"Pakistan journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New dynamic scoring method for deep evaluation of naloxegol as β-tubulin binding inhibitor.\",\"authors\":\"Hamdullah Khadim Sheikh, Jose M Padron, Tanzila Arshad, Uzma Habib, Shahnila Jamil, Haroon Khan, Khurshid Ayub\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a new scoring method for rating the performance of ligands on same protein, using their extensive dynamic flexibility properties, binding with protein and impact on receptor protein. Based on molecular dynamics (MD), this method is more accurate than single-point energy calculations. This method identified an ideal FDA-approved drug as β-tubulin microtubule inhibitor with improved attributes compared to commercial microtubule disassembly inhibitor, Paclitaxel (PTX). We started with virtual screening (VS) of FDA-approved drugs inside PTX's binding pocket (A) of human β-tubulin protein. Screened ligands (>80% score) were evaluated for non-permeation through blood-brain barrier (BBB) as targets were body cancers, gastrointestinal absorption, Lipinski, non-efflux from central nervous system (CNS) by p-glycoprotein (Pgp), and ADMET analysis. This identified FDA-approved Naloxegol drug with superior attributes compared to PTX. Pocket (A) specific docking of chain length variable derivatives of Naloxegol gave docked poses that underwent MD run to give a range of properties and their descriptors (RMSD, RMSF, RoG, H-bonds, hydrophobic interaction and SASA). QSPR validated that MD properties dependent upon [-CH<sub>2</sub>-CH<sub>2</sub>-O-]<sub>n=0-7</sub> chain length of Naloxegol. MD data underwent normalization, PCA analysis and scoring against PTX. One Naloxegol derivative scored higher than PTX as a potential microtubule disassembly inhibitor.</p>\",\"PeriodicalId\":19971,\"journal\":{\"name\":\"Pakistan journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
New dynamic scoring method for deep evaluation of naloxegol as β-tubulin binding inhibitor.
We report a new scoring method for rating the performance of ligands on same protein, using their extensive dynamic flexibility properties, binding with protein and impact on receptor protein. Based on molecular dynamics (MD), this method is more accurate than single-point energy calculations. This method identified an ideal FDA-approved drug as β-tubulin microtubule inhibitor with improved attributes compared to commercial microtubule disassembly inhibitor, Paclitaxel (PTX). We started with virtual screening (VS) of FDA-approved drugs inside PTX's binding pocket (A) of human β-tubulin protein. Screened ligands (>80% score) were evaluated for non-permeation through blood-brain barrier (BBB) as targets were body cancers, gastrointestinal absorption, Lipinski, non-efflux from central nervous system (CNS) by p-glycoprotein (Pgp), and ADMET analysis. This identified FDA-approved Naloxegol drug with superior attributes compared to PTX. Pocket (A) specific docking of chain length variable derivatives of Naloxegol gave docked poses that underwent MD run to give a range of properties and their descriptors (RMSD, RMSF, RoG, H-bonds, hydrophobic interaction and SASA). QSPR validated that MD properties dependent upon [-CH2-CH2-O-]n=0-7 chain length of Naloxegol. MD data underwent normalization, PCA analysis and scoring against PTX. One Naloxegol derivative scored higher than PTX as a potential microtubule disassembly inhibitor.
期刊介绍:
Pakistan Journal of Pharmaceutical Sciences (PJPS) is a peer reviewed multi-disciplinary pharmaceutical sciences journal. The PJPS had its origin in 1988 from the Faculty of Pharmacy, University of Karachi as a biannual journal, frequency converted as quarterly in 2005, and now PJPS is being published as bi-monthly from January 2013.
PJPS covers Biological, Pharmaceutical and Medicinal Research (Drug Delivery, Pharmacy Management, Molecular Biology, Biochemical, Pharmacology, Pharmacokinetics, Phytochemical, Bio-analytical, Therapeutics, Biotechnology and research on nano particles.