Simone Caielli, Preetha Balasubramanian, Juan Rodriguez-Alcazar, Uthra Balaji, Lauren Robinson, Zurong Wan, Jeanine Baisch, Cynthia Smitherman, Lynnette Walters, Paola Sparagana, Djamel Nehar-Belaid, Radu Marches, Lorien Nassi, Katie Stewart, Julie Fuller, Jacques F. Banchereau, Jinghua Gu, Tracey Wright, Virginia Pascual
{"title":"I 型 IFN 驱动狼疮单核细胞分泌非常规 IL-1β","authors":"Simone Caielli, Preetha Balasubramanian, Juan Rodriguez-Alcazar, Uthra Balaji, Lauren Robinson, Zurong Wan, Jeanine Baisch, Cynthia Smitherman, Lynnette Walters, Paola Sparagana, Djamel Nehar-Belaid, Radu Marches, Lorien Nassi, Katie Stewart, Julie Fuller, Jacques F. Banchereau, Jinghua Gu, Tracey Wright, Virginia Pascual","doi":"10.1016/j.immuni.2024.09.004","DOIUrl":null,"url":null,"abstract":"Opsonization of red blood cells that retain mitochondria (Mito<sup>+</sup> RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1β (mIL-1β) upon Mito<sup>+</sup> RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors’ (RLRs) sensing of Mito<sup>+</sup> RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1β (IL-1β) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito<sup>+</sup> RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1β secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1β into a <em>trans</em>-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1β and expanded in SLE patients with active disease.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"52 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type I IFN drives unconventional IL-1β secretion in lupus monocytes\",\"authors\":\"Simone Caielli, Preetha Balasubramanian, Juan Rodriguez-Alcazar, Uthra Balaji, Lauren Robinson, Zurong Wan, Jeanine Baisch, Cynthia Smitherman, Lynnette Walters, Paola Sparagana, Djamel Nehar-Belaid, Radu Marches, Lorien Nassi, Katie Stewart, Julie Fuller, Jacques F. Banchereau, Jinghua Gu, Tracey Wright, Virginia Pascual\",\"doi\":\"10.1016/j.immuni.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opsonization of red blood cells that retain mitochondria (Mito<sup>+</sup> RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1β (mIL-1β) upon Mito<sup>+</sup> RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors’ (RLRs) sensing of Mito<sup>+</sup> RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1β (IL-1β) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito<sup>+</sup> RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1β secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1β into a <em>trans</em>-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1β and expanded in SLE patients with active disease.\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.09.004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.09.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Type I IFN drives unconventional IL-1β secretion in lupus monocytes
Opsonization of red blood cells that retain mitochondria (Mito+ RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1β (mIL-1β) upon Mito+ RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors’ (RLRs) sensing of Mito+ RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1β (IL-1β) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito+ RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1β secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1β into a trans-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1β and expanded in SLE patients with active disease.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.