Zijian Zhao, Sola Woo, Khandker Akif Aabrar, Sharadindu Gopal Kirtania, Zhouhang Jiang, Shan Deng, Yi Xiao, Halid Mulaosmanovic, Stefan Duenkel, Dominik Kleimaier, Steven Soss, Sven Beyer, Rajiv Joshi, Scott Meninger, Mohamed Mohamed, Kijoon Kim, Jongho Woo, Suhwan Lim, Kwangsoo Kim, Wanki Kim, Daewon Ha, Vijaykrishnan Narayanan, Suman Datta, Shimeng Yu, Kai Ni
{"title":"通过专用且串兼容的密码门为无密码干扰的垂直 NAND 存储铺平道路","authors":"Zijian Zhao, Sola Woo, Khandker Akif Aabrar, Sharadindu Gopal Kirtania, Zhouhang Jiang, Shan Deng, Yi Xiao, Halid Mulaosmanovic, Stefan Duenkel, Dominik Kleimaier, Steven Soss, Sven Beyer, Rajiv Joshi, Scott Meninger, Mohamed Mohamed, Kijoon Kim, Jongho Woo, Suhwan Lim, Kwangsoo Kim, Wanki Kim, Daewon Ha, Vijaykrishnan Narayanan, Suman Datta, Shimeng Yu, Kai Ni","doi":"10.1021/acsami.4c08190","DOIUrl":null,"url":null,"abstract":"In this work, we propose a dual-port cell design to address the pass disturbance in vertical NAND storage, which can pass signals through a dedicated and string-compatible pass gate. We demonstrate that (i) the pass disturb-free feature originates from weakening of the depolarization field by the pass bias at the high-<i>V</i><sub>TH</sub> (HVT) state and the screening of the applied field by the channel at the low-<i>V</i><sub>TH</sub> (LVT) state; (ii) combined simulations and experimental demonstrations of dual-port design verify the disturb-free operation in a NAND string, overcoming a key challenge in single-port designs; (iii) the proposed design can be incorporated into a highly scaled vertical NAND FeFET string, and the pass gate can be incorporated into the existing three-dimensional (3D) NAND with the negligible overhead of the pass gate interconnection through a global bottom pass gate contact in the substrate.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paving the Way for Pass Disturb-Free Vertical NAND Storage via a Dedicated and String-Compatible Pass Gate\",\"authors\":\"Zijian Zhao, Sola Woo, Khandker Akif Aabrar, Sharadindu Gopal Kirtania, Zhouhang Jiang, Shan Deng, Yi Xiao, Halid Mulaosmanovic, Stefan Duenkel, Dominik Kleimaier, Steven Soss, Sven Beyer, Rajiv Joshi, Scott Meninger, Mohamed Mohamed, Kijoon Kim, Jongho Woo, Suhwan Lim, Kwangsoo Kim, Wanki Kim, Daewon Ha, Vijaykrishnan Narayanan, Suman Datta, Shimeng Yu, Kai Ni\",\"doi\":\"10.1021/acsami.4c08190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a dual-port cell design to address the pass disturbance in vertical NAND storage, which can pass signals through a dedicated and string-compatible pass gate. We demonstrate that (i) the pass disturb-free feature originates from weakening of the depolarization field by the pass bias at the high-<i>V</i><sub>TH</sub> (HVT) state and the screening of the applied field by the channel at the low-<i>V</i><sub>TH</sub> (LVT) state; (ii) combined simulations and experimental demonstrations of dual-port design verify the disturb-free operation in a NAND string, overcoming a key challenge in single-port designs; (iii) the proposed design can be incorporated into a highly scaled vertical NAND FeFET string, and the pass gate can be incorporated into the existing three-dimensional (3D) NAND with the negligible overhead of the pass gate interconnection through a global bottom pass gate contact in the substrate.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c08190\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c08190","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Paving the Way for Pass Disturb-Free Vertical NAND Storage via a Dedicated and String-Compatible Pass Gate
In this work, we propose a dual-port cell design to address the pass disturbance in vertical NAND storage, which can pass signals through a dedicated and string-compatible pass gate. We demonstrate that (i) the pass disturb-free feature originates from weakening of the depolarization field by the pass bias at the high-VTH (HVT) state and the screening of the applied field by the channel at the low-VTH (LVT) state; (ii) combined simulations and experimental demonstrations of dual-port design verify the disturb-free operation in a NAND string, overcoming a key challenge in single-port designs; (iii) the proposed design can be incorporated into a highly scaled vertical NAND FeFET string, and the pass gate can be incorporated into the existing three-dimensional (3D) NAND with the negligible overhead of the pass gate interconnection through a global bottom pass gate contact in the substrate.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.