Armin Bayati, Riham Ayoubi, Adriana Aguila, Cornelia E. Zorca, Ghislaine Deyab, Chanshuai Han, Sherilyn Junelle Recinto, Emmanuelle Nguyen-Renou, Cecilia Rocha, Gilles Maussion, Wen Luo, Irina Shlaifer, Emily Banks, Ian McDowell, Esther Del Cid Pellitero, Xue Er Ding, Behrang Sharif, Philippe Séguéla, Moein Yaqubi, Carol X.-Q. Chen, Zhipeng You, Narges Abdian, Heidi M. McBride, Edward A. Fon, Jo Anne Stratton, Thomas M. Durcan, Patrick C. Nahirney, Peter S. McPherson
{"title":"通过连续暴露于α-突触核蛋白纤维和促炎细胞因子,在人类多巴胺能神经元中模拟帕金森病的病理变化","authors":"Armin Bayati, Riham Ayoubi, Adriana Aguila, Cornelia E. Zorca, Ghislaine Deyab, Chanshuai Han, Sherilyn Junelle Recinto, Emmanuelle Nguyen-Renou, Cecilia Rocha, Gilles Maussion, Wen Luo, Irina Shlaifer, Emily Banks, Ian McDowell, Esther Del Cid Pellitero, Xue Er Ding, Behrang Sharif, Philippe Séguéla, Moein Yaqubi, Carol X.-Q. Chen, Zhipeng You, Narges Abdian, Heidi M. McBride, Edward A. Fon, Jo Anne Stratton, Thomas M. Durcan, Patrick C. Nahirney, Peter S. McPherson","doi":"10.1038/s41593-024-01775-4","DOIUrl":null,"url":null,"abstract":"<p>Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson’s disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Parkinson’s disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines\",\"authors\":\"Armin Bayati, Riham Ayoubi, Adriana Aguila, Cornelia E. Zorca, Ghislaine Deyab, Chanshuai Han, Sherilyn Junelle Recinto, Emmanuelle Nguyen-Renou, Cecilia Rocha, Gilles Maussion, Wen Luo, Irina Shlaifer, Emily Banks, Ian McDowell, Esther Del Cid Pellitero, Xue Er Ding, Behrang Sharif, Philippe Séguéla, Moein Yaqubi, Carol X.-Q. Chen, Zhipeng You, Narges Abdian, Heidi M. McBride, Edward A. Fon, Jo Anne Stratton, Thomas M. Durcan, Patrick C. Nahirney, Peter S. McPherson\",\"doi\":\"10.1038/s41593-024-01775-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson’s disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41593-024-01775-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01775-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
路易体(Lewy bodies,LBs)是富含α-突触核蛋白的细胞内包涵体,是帕金森病(Parkinson's disease,PD)病理学的一个标志,但路易体形成的细胞模型仍未找到。最近的证据表明,免疫功能失调可能会导致帕金森病的发生。在这项研究中,我们发现诱导多能干细胞(iPSC)衍生的人多巴胺能(DA)神经元在接受α-突触核蛋白预成纤维(PFFs)处理后会形成LB样包涵体,但只有在与免疫挑战模型(干扰素-γ或白细胞介素-1β处理)结合或与活化的小胶质细胞类共同培养时才会形成LB样包涵体。暴露于干扰素-γ会损害DA神经元溶酶体的功能,导致LB形成。LAMP2 的敲除或 GBA 的敲除与 PFF 的给药相结合足以导致包涵体的形成。最后,我们观察到,iPSC衍生的DA神经元中的LB样包涵体是膜结合的,这表明它们并不局限于细胞质区,而可能是由于自噬功能障碍而形成的。这些数据共同表明,免疫触发的溶酶体功能障碍可能会导致帕金森病的病理发展。
Modeling Parkinson’s disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines
Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson’s disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.