通过模型透视胎盘抗体转移的调控因子

IF 27.7 1区 医学 Q1 IMMUNOLOGY Nature Immunology Pub Date : 2024-10-08 DOI:10.1038/s41590-024-01971-1
Remziye E. Wessel, Sepideh Dolatshahi
{"title":"通过模型透视胎盘抗体转移的调控因子","authors":"Remziye E. Wessel, Sepideh Dolatshahi","doi":"10.1038/s41590-024-01971-1","DOIUrl":null,"url":null,"abstract":"<p>Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.</p>","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulators of placental antibody transfer through a modeling lens\",\"authors\":\"Remziye E. Wessel, Sepideh Dolatshahi\",\"doi\":\"10.1038/s41590-024-01971-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.</p>\",\"PeriodicalId\":19032,\"journal\":{\"name\":\"Nature Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41590-024-01971-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41590-024-01971-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

婴儿由于体液免疫反应能力有限以及其耐受性免疫表型,很容易受到感染,这阻碍了新生儿疫苗接种的成功。从母体到胎儿的经胎盘 IgG 转移可在婴儿出生后的头几周提供至关重要的保护,最近已将母体免疫作为一项公共卫生策略来实施,以保护新生儿免受严重感染。尽管早期取得了成功,但目前的母体疫苗并不能为妊娠期长短、胎盘和母体免疫特征不同的孕妇提供可比的保护,也没有考虑到母体免疫反应和胎盘转移之间的动态相互作用。此外,现有实验模型的不足以及调查妊娠期人类 IgG 转移纵向动态的安全性挑战也阻碍了母体疫苗合理设计的进展。另一种方法是,采用硅学机理模型来揭示胎盘抗体转移的调控过程。本综述从机理建模的角度综合了目前的文献,以确定抗体转移的胎盘和母体调控因子、其临床协变量和知识差距,从而指导未来的研究。我们还描述了使用综合建模和实验方法合理设计疫苗以应对现有和新出现的新生儿病原体威胁的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulators of placental antibody transfer through a modeling lens

Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Immunology
Nature Immunology 医学-免疫学
CiteScore
40.00
自引率
2.30%
发文量
248
审稿时长
4-8 weeks
期刊介绍: Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.
期刊最新文献
Spatial microniches of IL-2 combine with IL-10 to drive lung migratory TH2 cells in response to inhaled allergen Vaccination against rapidly evolving pathogens and the entanglements of memory LRRK2 is not required for lysozyme expression in Paneth cells Regulators of placental antibody transfer through a modeling lens Reply to: LRRK2 is not required for lysozyme expression in Paneth cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1