Li-Ling Zhang, Hua Huang, Qingran Ding, Hui-Ping Xiao, Qing-Yan Liu and Yu-Ling Wang
{"title":"用吡啶衍生物阳离子调节二维混合溴化铅包晶的双折射性","authors":"Li-Ling Zhang, Hua Huang, Qingran Ding, Hui-Ping Xiao, Qing-Yan Liu and Yu-Ling Wang","doi":"10.1039/D4QI01547A","DOIUrl":null,"url":null,"abstract":"<p >Birefringent crystals for modulating the polarization of light are of technological importance in optical communications. Herein we provide two novel two-dimensional hybrid halide perovskites, [(H<small><sub>2</sub></small>-dpys)(PbBr<small><sub>4</sub></small>)] (<strong>1</strong>) (dpys = di(pyridin-4-yl)sulfane) and [(H-cmpy)<small><sub>4</sub></small>(Pb<small><sub>3</sub></small>Br<small><sub>10</sub></small>)] (<strong>2</strong>) (cmpy = 4-chloro-3-methylpyridine), which can act as birefringent crystals. Remarkably, the crystal structures and the optoelectronic performance of the hybrid lead bromide perovskites are elaborately regulated by the organic cations of pyridine derivatives. Compound <strong>2</strong> constructed from the H-cmpy<small><sup>+</sup></small> cations containing the single pyridyl moiety has a significantly enhanced birefringence (0.315@550 nm) compared to compound <strong>1</strong> (0.192@550 nm) with two pyridyl moieties of H<small><sub>2</sub></small>-dpys<small><sup>2+</sup></small> cations, and it is larger than those of all commercial birefringent crystals and most of the hybrid metal halide perovskites. The results of the theoretical calculations showed that the highly distorted PbBr<small><sub>6</sub></small> octahedra and the delocalized π-conjugation of H-cmpy<small><sup>+</sup></small> cations synergistically contribute to the enhanced birefringence of <strong>2</strong>. This work provides a useful strategy for modulating the crystal structure and optoelectronic performance of the hybrid lead halide perovskites.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the birefringence of two-dimensional hybrid lead bromide perovskites using pyridine derivative cations†\",\"authors\":\"Li-Ling Zhang, Hua Huang, Qingran Ding, Hui-Ping Xiao, Qing-Yan Liu and Yu-Ling Wang\",\"doi\":\"10.1039/D4QI01547A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Birefringent crystals for modulating the polarization of light are of technological importance in optical communications. Herein we provide two novel two-dimensional hybrid halide perovskites, [(H<small><sub>2</sub></small>-dpys)(PbBr<small><sub>4</sub></small>)] (<strong>1</strong>) (dpys = di(pyridin-4-yl)sulfane) and [(H-cmpy)<small><sub>4</sub></small>(Pb<small><sub>3</sub></small>Br<small><sub>10</sub></small>)] (<strong>2</strong>) (cmpy = 4-chloro-3-methylpyridine), which can act as birefringent crystals. Remarkably, the crystal structures and the optoelectronic performance of the hybrid lead bromide perovskites are elaborately regulated by the organic cations of pyridine derivatives. Compound <strong>2</strong> constructed from the H-cmpy<small><sup>+</sup></small> cations containing the single pyridyl moiety has a significantly enhanced birefringence (0.315@550 nm) compared to compound <strong>1</strong> (0.192@550 nm) with two pyridyl moieties of H<small><sub>2</sub></small>-dpys<small><sup>2+</sup></small> cations, and it is larger than those of all commercial birefringent crystals and most of the hybrid metal halide perovskites. The results of the theoretical calculations showed that the highly distorted PbBr<small><sub>6</sub></small> octahedra and the delocalized π-conjugation of H-cmpy<small><sup>+</sup></small> cations synergistically contribute to the enhanced birefringence of <strong>2</strong>. This work provides a useful strategy for modulating the crystal structure and optoelectronic performance of the hybrid lead halide perovskites.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01547a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01547a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modulating the birefringence of two-dimensional hybrid lead bromide perovskites using pyridine derivative cations†
Birefringent crystals for modulating the polarization of light are of technological importance in optical communications. Herein we provide two novel two-dimensional hybrid halide perovskites, [(H2-dpys)(PbBr4)] (1) (dpys = di(pyridin-4-yl)sulfane) and [(H-cmpy)4(Pb3Br10)] (2) (cmpy = 4-chloro-3-methylpyridine), which can act as birefringent crystals. Remarkably, the crystal structures and the optoelectronic performance of the hybrid lead bromide perovskites are elaborately regulated by the organic cations of pyridine derivatives. Compound 2 constructed from the H-cmpy+ cations containing the single pyridyl moiety has a significantly enhanced birefringence (0.315@550 nm) compared to compound 1 (0.192@550 nm) with two pyridyl moieties of H2-dpys2+ cations, and it is larger than those of all commercial birefringent crystals and most of the hybrid metal halide perovskites. The results of the theoretical calculations showed that the highly distorted PbBr6 octahedra and the delocalized π-conjugation of H-cmpy+ cations synergistically contribute to the enhanced birefringence of 2. This work provides a useful strategy for modulating the crystal structure and optoelectronic performance of the hybrid lead halide perovskites.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.