Maria Fernanda Campa, Craig M. Brown, Peter Byrley, Jason Delborne, Nicholas Glavin, Craig Green, Mark Griep, Tina Kaarsberg, Igor Linkov, Jeffrey B. Miller, Joshua E. Porterfield, Birgit Schwenzer, Quinn Spadola, Branden Brough, James A. Warren
{"title":"气候危机的纳米技术解决方案","authors":"Maria Fernanda Campa, Craig M. Brown, Peter Byrley, Jason Delborne, Nicholas Glavin, Craig Green, Mark Griep, Tina Kaarsberg, Igor Linkov, Jeffrey B. Miller, Joshua E. Porterfield, Birgit Schwenzer, Quinn Spadola, Branden Brough, James A. Warren","doi":"10.1038/s41565-024-01772-5","DOIUrl":null,"url":null,"abstract":"Climate change is one of humankind’s biggest challenges, leading to more frequent and intense climate extremes, including heatwaves, wildfires, hurricanes, ocean acidification, and increased extinction rates. Nanotechnology already plays an important role in decarbonizing critical processes. Still, despite the technical advances seen in the last decades, the International Energy Agency has identified many sectors that are not on track to achieve the global climate mitigation goals by 2030. Here, a multi-stakeholder group of nanoscientists from the public, private, and philanthropic sectors discuss four high-potential application spaces where nanotechnologies could accelerate progress: batteries and energy storage; catalysis; coatings, lubricants, membranes, and other interface technology; and capture of greenhouse gases. This Comment highlights opportunities and current gaps for those working to minimize the climate crisis and provides a framework for the nanotechnology community to answer the call to action on this global issue.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1422-1426"},"PeriodicalIF":38.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01772-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology solutions for the climate crisis\",\"authors\":\"Maria Fernanda Campa, Craig M. Brown, Peter Byrley, Jason Delborne, Nicholas Glavin, Craig Green, Mark Griep, Tina Kaarsberg, Igor Linkov, Jeffrey B. Miller, Joshua E. Porterfield, Birgit Schwenzer, Quinn Spadola, Branden Brough, James A. Warren\",\"doi\":\"10.1038/s41565-024-01772-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is one of humankind’s biggest challenges, leading to more frequent and intense climate extremes, including heatwaves, wildfires, hurricanes, ocean acidification, and increased extinction rates. Nanotechnology already plays an important role in decarbonizing critical processes. Still, despite the technical advances seen in the last decades, the International Energy Agency has identified many sectors that are not on track to achieve the global climate mitigation goals by 2030. Here, a multi-stakeholder group of nanoscientists from the public, private, and philanthropic sectors discuss four high-potential application spaces where nanotechnologies could accelerate progress: batteries and energy storage; catalysis; coatings, lubricants, membranes, and other interface technology; and capture of greenhouse gases. This Comment highlights opportunities and current gaps for those working to minimize the climate crisis and provides a framework for the nanotechnology community to answer the call to action on this global issue.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 10\",\"pages\":\"1422-1426\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41565-024-01772-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01772-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01772-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate change is one of humankind’s biggest challenges, leading to more frequent and intense climate extremes, including heatwaves, wildfires, hurricanes, ocean acidification, and increased extinction rates. Nanotechnology already plays an important role in decarbonizing critical processes. Still, despite the technical advances seen in the last decades, the International Energy Agency has identified many sectors that are not on track to achieve the global climate mitigation goals by 2030. Here, a multi-stakeholder group of nanoscientists from the public, private, and philanthropic sectors discuss four high-potential application spaces where nanotechnologies could accelerate progress: batteries and energy storage; catalysis; coatings, lubricants, membranes, and other interface technology; and capture of greenhouse gases. This Comment highlights opportunities and current gaps for those working to minimize the climate crisis and provides a framework for the nanotechnology community to answer the call to action on this global issue.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.