Rongyuan Gao, Philippe Noriel Q. Pascua, Anton Chesnokov, Ha T. Nguyen, Timothy M. Uyeki, Vasiliy P. Mishin, Natosha Zanders, Dan Cui, Yunho Jang, Joyce Jones, Juan De La Cruz, Han Di, Charles Todd Davis, Larisa V. Gubareva
{"title":"美国从人类身上分离出的猪源性甲型流感病毒的抗病毒敏感性","authors":"Rongyuan Gao, Philippe Noriel Q. Pascua, Anton Chesnokov, Ha T. Nguyen, Timothy M. Uyeki, Vasiliy P. Mishin, Natosha Zanders, Dan Cui, Yunho Jang, Joyce Jones, Juan De La Cruz, Han Di, Charles Todd Davis, Larisa V. Gubareva","doi":"10.3201/eid3011.240892","DOIUrl":null,"url":null,"abstract":"<p>Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor–resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence–matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin’s stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.</p>","PeriodicalId":11595,"journal":{"name":"Emerging Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiviral Susceptibility of Swine-Origin Influenza A Viruses Isolated from Humans, United States\",\"authors\":\"Rongyuan Gao, Philippe Noriel Q. Pascua, Anton Chesnokov, Ha T. Nguyen, Timothy M. Uyeki, Vasiliy P. Mishin, Natosha Zanders, Dan Cui, Yunho Jang, Joyce Jones, Juan De La Cruz, Han Di, Charles Todd Davis, Larisa V. Gubareva\",\"doi\":\"10.3201/eid3011.240892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor–resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence–matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin’s stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.</p>\",\"PeriodicalId\":11595,\"journal\":{\"name\":\"Emerging Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3201/eid3011.240892\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3201/eid3011.240892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Antiviral Susceptibility of Swine-Origin Influenza A Viruses Isolated from Humans, United States
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor–resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence–matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin’s stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
期刊介绍:
Emerging Infectious Diseases is a monthly open access journal published by the Centers for Disease Control and Prevention. The primary goal of this peer-reviewed journal is to advance the global recognition of both new and reemerging infectious diseases, while also enhancing our understanding of the underlying factors that contribute to disease emergence, prevention, and elimination.
Targeted towards professionals in the field of infectious diseases and related sciences, the journal encourages diverse contributions from experts in academic research, industry, clinical practice, public health, as well as specialists in economics, social sciences, and other relevant disciplines. By fostering a collaborative approach, Emerging Infectious Diseases aims to facilitate interdisciplinary dialogue and address the multifaceted challenges posed by infectious diseases.