{"title":"由 MnI3/In2Se3 多铁素体异质结构的铁电极化反转驱动的可调肖特基势垒和磁电耦合","authors":"Tao Zhang, Hao Guo, Jiao Shen, Ying Liang, Haidong Fan, Wentao Jiang, Qingyuan Wang, Xiaobao Tian","doi":"10.1038/s41524-024-01429-w","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) multiferroic materials are recognized as promising candidates for next-generation nanodevices due to their tunable magnetoelectric coupling and distinctive physical phenomena. In this study, we proposed a novel 2D multiferroic van der Waals heterostructure (vdWH) by stacking atomic layers of ferroelectric In<sub>2</sub>Se<sub>3</sub> and ferromagnetic MnI<sub>3</sub>. Using first-principles calculations, we found that the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH exhibit robust metallic conductivity across various spin and polarization states, preserving the distinctive band characteristics of isolated In<sub>2</sub>Se<sub>3</sub> and MnI<sub>3</sub>. However, the alignment of Fermi levels causes the conduction band minimum (CBM) and valence band maximum (VBM) of In<sub>2</sub>Se<sub>3</sub> and MnI<sub>3</sub> to shift relative to their original band structures. Remarkably, the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> with the upward polarization state of In<sub>2</sub>Se<sub>3</sub> exhibits an Ohmic contact. Switching the polarization direction of In<sub>2</sub>Se<sub>3</sub> from upward to downward can transform the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH from an Ohmic contact to a p-type Schottky contact, while also modifying its dipole moment, magnetic strength and direction. Based on these properties of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH, we designed the field-effect transistors (FETs) with high on/off rates and nonvolatile data storage device. Furthermore, the Schottky barrier heights (SBHs), magnetic moment, and dipole moment of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH can also be effectively regulated by reducing the interlayer distance. With the continuous reduction of the interlayer distance of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH, its easy magnetization axis is expected to shift from in-plane to out-of-plane. These findings offer new insights for the design and development of the next-generation spintronic and nonvolatile memory nanodevices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"71 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Schottky barriers and magnetoelectric coupling driven by ferroelectric polarization reversal of MnI3/In2Se3 multiferroic heterostructures\",\"authors\":\"Tao Zhang, Hao Guo, Jiao Shen, Ying Liang, Haidong Fan, Wentao Jiang, Qingyuan Wang, Xiaobao Tian\",\"doi\":\"10.1038/s41524-024-01429-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2D) multiferroic materials are recognized as promising candidates for next-generation nanodevices due to their tunable magnetoelectric coupling and distinctive physical phenomena. In this study, we proposed a novel 2D multiferroic van der Waals heterostructure (vdWH) by stacking atomic layers of ferroelectric In<sub>2</sub>Se<sub>3</sub> and ferromagnetic MnI<sub>3</sub>. Using first-principles calculations, we found that the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH exhibit robust metallic conductivity across various spin and polarization states, preserving the distinctive band characteristics of isolated In<sub>2</sub>Se<sub>3</sub> and MnI<sub>3</sub>. However, the alignment of Fermi levels causes the conduction band minimum (CBM) and valence band maximum (VBM) of In<sub>2</sub>Se<sub>3</sub> and MnI<sub>3</sub> to shift relative to their original band structures. Remarkably, the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> with the upward polarization state of In<sub>2</sub>Se<sub>3</sub> exhibits an Ohmic contact. Switching the polarization direction of In<sub>2</sub>Se<sub>3</sub> from upward to downward can transform the MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH from an Ohmic contact to a p-type Schottky contact, while also modifying its dipole moment, magnetic strength and direction. Based on these properties of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH, we designed the field-effect transistors (FETs) with high on/off rates and nonvolatile data storage device. Furthermore, the Schottky barrier heights (SBHs), magnetic moment, and dipole moment of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH can also be effectively regulated by reducing the interlayer distance. With the continuous reduction of the interlayer distance of MnI<sub>3</sub>/In<sub>2</sub>Se<sub>3</sub> vdWH, its easy magnetization axis is expected to shift from in-plane to out-of-plane. These findings offer new insights for the design and development of the next-generation spintronic and nonvolatile memory nanodevices.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01429-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01429-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable Schottky barriers and magnetoelectric coupling driven by ferroelectric polarization reversal of MnI3/In2Se3 multiferroic heterostructures
Two-dimensional (2D) multiferroic materials are recognized as promising candidates for next-generation nanodevices due to their tunable magnetoelectric coupling and distinctive physical phenomena. In this study, we proposed a novel 2D multiferroic van der Waals heterostructure (vdWH) by stacking atomic layers of ferroelectric In2Se3 and ferromagnetic MnI3. Using first-principles calculations, we found that the MnI3/In2Se3 vdWH exhibit robust metallic conductivity across various spin and polarization states, preserving the distinctive band characteristics of isolated In2Se3 and MnI3. However, the alignment of Fermi levels causes the conduction band minimum (CBM) and valence band maximum (VBM) of In2Se3 and MnI3 to shift relative to their original band structures. Remarkably, the MnI3/In2Se3 with the upward polarization state of In2Se3 exhibits an Ohmic contact. Switching the polarization direction of In2Se3 from upward to downward can transform the MnI3/In2Se3 vdWH from an Ohmic contact to a p-type Schottky contact, while also modifying its dipole moment, magnetic strength and direction. Based on these properties of MnI3/In2Se3 vdWH, we designed the field-effect transistors (FETs) with high on/off rates and nonvolatile data storage device. Furthermore, the Schottky barrier heights (SBHs), magnetic moment, and dipole moment of MnI3/In2Se3 vdWH can also be effectively regulated by reducing the interlayer distance. With the continuous reduction of the interlayer distance of MnI3/In2Se3 vdWH, its easy magnetization axis is expected to shift from in-plane to out-of-plane. These findings offer new insights for the design and development of the next-generation spintronic and nonvolatile memory nanodevices.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.