COVID-19的7 T定量易感图:脑干效应和结果关联。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Pub Date : 2024-10-07 DOI:10.1093/brain/awae215
Catarina Rua,Betty Raman,Christopher T Rodgers,Virginia F J Newcombe,Anne Manktelow,Doris A Chatfield,Stephen J Sawcer,Joanne G Outtrim,Victoria C Lupson,Emmanuel A Stamatakis,Guy B Williams,William T Clarke,Lin Qiu,Martyn Ezra,Rory McDonald,Stuart Clare,Mark Cassar,Stefan Neubauer,Karen D Ersche,Edward T Bullmore,David K Menon,Kyle Pattinson,James B Rowe
{"title":"COVID-19的7 T定量易感图:脑干效应和结果关联。","authors":"Catarina Rua,Betty Raman,Christopher T Rodgers,Virginia F J Newcombe,Anne Manktelow,Doris A Chatfield,Stephen J Sawcer,Joanne G Outtrim,Victoria C Lupson,Emmanuel A Stamatakis,Guy B Williams,William T Clarke,Lin Qiu,Martyn Ezra,Rory McDonald,Stuart Clare,Mark Cassar,Stefan Neubauer,Karen D Ersche,Edward T Bullmore,David K Menon,Kyle Pattinson,James B Rowe","doi":"10.1093/brain/awae215","DOIUrl":null,"url":null,"abstract":"Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative susceptibility mapping at 7 T in COVID-19: brainstem effects and outcome associations.\",\"authors\":\"Catarina Rua,Betty Raman,Christopher T Rodgers,Virginia F J Newcombe,Anne Manktelow,Doris A Chatfield,Stephen J Sawcer,Joanne G Outtrim,Victoria C Lupson,Emmanuel A Stamatakis,Guy B Williams,William T Clarke,Lin Qiu,Martyn Ezra,Rory McDonald,Stuart Clare,Mark Cassar,Stefan Neubauer,Karen D Ersche,Edward T Bullmore,David K Menon,Kyle Pattinson,James B Rowe\",\"doi\":\"10.1093/brain/awae215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae215\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae215","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

死后研究显示,因感染严重急性呼吸系统综合征冠状病毒(SARS-CoV-2)而死亡的患者,其中枢神经系统(尤其是脑干)经常发生病理变化。其中许多变化被认为是由副感染和/或感染后免疫反应引起的。据报道,2019 年冠状病毒病(COVID-19)住院后的患者经常会出现疲劳、呼吸困难和胸痛等临床症状。我们认为,这些症状部分是由于脑干关键神经调节核受损所致。虽然脑干受累已在疾病的急性期得到证实,但核磁共振成像上脑干长期变化的证据尚无定论。因此,我们使用超高磁场(7 T)定量易感性图谱(QSM)来验证这样一个假设:COVID 后患者的脑干异常会持续存在,而且这些异常与主要症状的持续存在有关。我们使用了 30 名 COVID-19 患者入院 93-548 天后扫描的 7 T QSM 数据,并将其与 51 名年龄匹配、无 COVID-19 感染史的对照组进行了比较。我们将患者的 QSM 信号与疾病严重程度(入院时间和 COVID-19 严重程度量表)、急性期炎症反应(C 反应蛋白、D-二聚体和血小板水平)、功能恢复(修正的 Rankin 量表)、抑郁(患者健康问卷-9)和焦虑(广泛性焦虑症-7)相关联。在 COVID-19 幸存者中,延髓、脑桥和脑干中脑区域的 MR 易感性增加。具体而言,下延髓网状结构、剑突苍白球和蒙昧体的易感性增加。在这些区域,组织易感性较高的患者急性疾病严重程度较差,急性炎症指标较高,功能恢复也明显较差。这项研究有助于了解 COVID-19 的长期影响和恢复情况。我们使用无创超高场 7 T MRI 显示了 COVID-19 住院后幸存者脑干病理生理变化与炎症过程相关的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative susceptibility mapping at 7 T in COVID-19: brainstem effects and outcome associations.
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
期刊最新文献
Transient brain structure changes after high phenylalanine exposure in adults with phenylketonuria. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1