Jia-Feng He, Guo-Guang Wang, Matthew J. Brzozowski, Pei Ni, Xiang-Long Luo, Jun Mu, Weiqiang Li
{"title":"植蚀作用过程中的下生硫化物沉淀:从华南德兴斑岩铜-钼-金矿床铜同位素演化中获得的启示","authors":"Jia-Feng He, Guo-Guang Wang, Matthew J. Brzozowski, Pei Ni, Xiang-Long Luo, Jun Mu, Weiqiang Li","doi":"10.1007/s00126-024-01321-z","DOIUrl":null,"url":null,"abstract":"<p>The contributions of early potassic and later phyllic alteration stages to Cu endowment of the giant Dexing porphyry Cu–Mo–Au system in South China are determined using changes in the Cu isotope composition of hypogene chalcopyrite from three vein stages. The δ<sup>65</sup>Cu values of chalcopyrite (δ<sup>65</sup>Cu<sub>cpy</sub> values) from the potassic (stage 1: -0.05‰ to 0.21‰) to the phyllic alteration stages (stage 2: -0.03‰ to 0.24‰) are relatively invariable, but chalcopyrite in the propylitic alteration stage (stage 3) has notably lower isotopic values (-0.35‰ to 0.02‰). The sharp decrease in δ<sup>65</sup>Cu<sub>cpy</sub> values in the latest vein stage is likely a result of precipitation of significant amounts of isotopically heavy chalcopyrite in the phyllic alteration environment. The overall isotopic evolution can be simulated, using a Rayleigh fractionation model, with the majority of Cu having precipitated during the phyllic alteration stage. By comparing our data with published Cu isotope results from other porphyry deposits, we demonstrate that the systematics of δ<sup>65</sup>Cu<sub>cpy</sub> values during different hydrothermal alteration stages could convincingly trace the relative timing and mechanism(s) of Cu precipitation in porphyry Cu systems. Spatial mapping of Cu isotopes at Dexing suggest that sharp decreases of δ<sup>65</sup>Cu<sub>cpy</sub> values in hypogene zones may be used to delineate the boundary of high-grade ore zones.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"122 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypogene sulfide precipitation during phyllic alteration: insights from copper isotopic evolution of the Dexing porphyry Cu–Mo–Au deposit, South China\",\"authors\":\"Jia-Feng He, Guo-Guang Wang, Matthew J. Brzozowski, Pei Ni, Xiang-Long Luo, Jun Mu, Weiqiang Li\",\"doi\":\"10.1007/s00126-024-01321-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The contributions of early potassic and later phyllic alteration stages to Cu endowment of the giant Dexing porphyry Cu–Mo–Au system in South China are determined using changes in the Cu isotope composition of hypogene chalcopyrite from three vein stages. The δ<sup>65</sup>Cu values of chalcopyrite (δ<sup>65</sup>Cu<sub>cpy</sub> values) from the potassic (stage 1: -0.05‰ to 0.21‰) to the phyllic alteration stages (stage 2: -0.03‰ to 0.24‰) are relatively invariable, but chalcopyrite in the propylitic alteration stage (stage 3) has notably lower isotopic values (-0.35‰ to 0.02‰). The sharp decrease in δ<sup>65</sup>Cu<sub>cpy</sub> values in the latest vein stage is likely a result of precipitation of significant amounts of isotopically heavy chalcopyrite in the phyllic alteration environment. The overall isotopic evolution can be simulated, using a Rayleigh fractionation model, with the majority of Cu having precipitated during the phyllic alteration stage. By comparing our data with published Cu isotope results from other porphyry deposits, we demonstrate that the systematics of δ<sup>65</sup>Cu<sub>cpy</sub> values during different hydrothermal alteration stages could convincingly trace the relative timing and mechanism(s) of Cu precipitation in porphyry Cu systems. Spatial mapping of Cu isotopes at Dexing suggest that sharp decreases of δ<sup>65</sup>Cu<sub>cpy</sub> values in hypogene zones may be used to delineate the boundary of high-grade ore zones.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01321-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01321-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Hypogene sulfide precipitation during phyllic alteration: insights from copper isotopic evolution of the Dexing porphyry Cu–Mo–Au deposit, South China
The contributions of early potassic and later phyllic alteration stages to Cu endowment of the giant Dexing porphyry Cu–Mo–Au system in South China are determined using changes in the Cu isotope composition of hypogene chalcopyrite from three vein stages. The δ65Cu values of chalcopyrite (δ65Cucpy values) from the potassic (stage 1: -0.05‰ to 0.21‰) to the phyllic alteration stages (stage 2: -0.03‰ to 0.24‰) are relatively invariable, but chalcopyrite in the propylitic alteration stage (stage 3) has notably lower isotopic values (-0.35‰ to 0.02‰). The sharp decrease in δ65Cucpy values in the latest vein stage is likely a result of precipitation of significant amounts of isotopically heavy chalcopyrite in the phyllic alteration environment. The overall isotopic evolution can be simulated, using a Rayleigh fractionation model, with the majority of Cu having precipitated during the phyllic alteration stage. By comparing our data with published Cu isotope results from other porphyry deposits, we demonstrate that the systematics of δ65Cucpy values during different hydrothermal alteration stages could convincingly trace the relative timing and mechanism(s) of Cu precipitation in porphyry Cu systems. Spatial mapping of Cu isotopes at Dexing suggest that sharp decreases of δ65Cucpy values in hypogene zones may be used to delineate the boundary of high-grade ore zones.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.