Yuankun Wang, Yintong Zhao, Shu Zhang, Long Shang, Youxuan Ni, Yong Lu, Yixin Li, Zhenhua Yan, Zhiwei Miao, Jun Chen
{"title":"具有独特 P-F 键的单氟磷酸盐,可制成不易燃、长寿命的锂离子电池","authors":"Yuankun Wang, Yintong Zhao, Shu Zhang, Long Shang, Youxuan Ni, Yong Lu, Yixin Li, Zhenhua Yan, Zhiwei Miao, Jun Chen","doi":"10.1002/anie.202412108","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2 || graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2% after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monofluorinated Phosphate with Unique P-F Bond for Nonflammable and Long-Life Lithium-Ion Batteries\",\"authors\":\"Yuankun Wang, Yintong Zhao, Shu Zhang, Long Shang, Youxuan Ni, Yong Lu, Yixin Li, Zhenhua Yan, Zhiwei Miao, Jun Chen\",\"doi\":\"10.1002/anie.202412108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2 || graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2% after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202412108\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monofluorinated Phosphate with Unique P-F Bond for Nonflammable and Long-Life Lithium-Ion Batteries
Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2 || graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2% after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.