Thi Na Le, Yerin Kim, Kyu-Myung Lee, Jong-Am Hong, Jooyeon Oh, Yongsup Park, Min Chul Suh
{"title":"通过溶液处理有机发光二极管中的界面电荷诱导过冲效应抑制初始降解。","authors":"Thi Na Le, Yerin Kim, Kyu-Myung Lee, Jong-Am Hong, Jooyeon Oh, Yongsup Park, Min Chul Suh","doi":"10.1021/acsami.4c11945","DOIUrl":null,"url":null,"abstract":"<p><p>As the chemical stability of organic materials in organic light-emitting diodes (OLEDs) greatly impacts devices' lifetime, a thoughtful and advanced design of materials and device structures is necessary. In our work, we have achieved lifetime enhancement at its initial stage for solution-processed OLEDs. This improvement was realized through the implementation of a double electron transporting layer (dETL) composed of 2-[4-(9,10-dinaphthalen-2-yl-anthracen-2-yl)-phenyl]-1-phenyl-1H-benzoimidazole (ET) and hydroxyquinolinolato-lithium (Liq). A giant surface potential was generated at the surface of a constituent electron transport layer (ETL) that contained a higher concentration of Liq with high polarity. This giant surface potential simultaneously promoted the injection of trapped/accumulated electrons through the interface within dETL and the injection of holes from the anode, generating more exciton recombination events and ultimately enhancing efficiency by 133.0% and lifetime LT95 (luminance dropped by 5%) by 300% with an overshooting effect. Additionally, the degradation at the emitting layer was mitigated by shifting the degradation zone to the dETL, which was evidenced by laser desorption/ionization-time-of-flight (LDI-TOF) mass spectroscopy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69636-69644"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of Initial Degradation via an Interfacial Charge-Induced Overshooting Effect in Solution-Processed Organic Light-Emitting Diodes.\",\"authors\":\"Thi Na Le, Yerin Kim, Kyu-Myung Lee, Jong-Am Hong, Jooyeon Oh, Yongsup Park, Min Chul Suh\",\"doi\":\"10.1021/acsami.4c11945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the chemical stability of organic materials in organic light-emitting diodes (OLEDs) greatly impacts devices' lifetime, a thoughtful and advanced design of materials and device structures is necessary. In our work, we have achieved lifetime enhancement at its initial stage for solution-processed OLEDs. This improvement was realized through the implementation of a double electron transporting layer (dETL) composed of 2-[4-(9,10-dinaphthalen-2-yl-anthracen-2-yl)-phenyl]-1-phenyl-1H-benzoimidazole (ET) and hydroxyquinolinolato-lithium (Liq). A giant surface potential was generated at the surface of a constituent electron transport layer (ETL) that contained a higher concentration of Liq with high polarity. This giant surface potential simultaneously promoted the injection of trapped/accumulated electrons through the interface within dETL and the injection of holes from the anode, generating more exciton recombination events and ultimately enhancing efficiency by 133.0% and lifetime LT95 (luminance dropped by 5%) by 300% with an overshooting effect. Additionally, the degradation at the emitting layer was mitigated by shifting the degradation zone to the dETL, which was evidenced by laser desorption/ionization-time-of-flight (LDI-TOF) mass spectroscopy.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"69636-69644\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c11945\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Suppression of Initial Degradation via an Interfacial Charge-Induced Overshooting Effect in Solution-Processed Organic Light-Emitting Diodes.
As the chemical stability of organic materials in organic light-emitting diodes (OLEDs) greatly impacts devices' lifetime, a thoughtful and advanced design of materials and device structures is necessary. In our work, we have achieved lifetime enhancement at its initial stage for solution-processed OLEDs. This improvement was realized through the implementation of a double electron transporting layer (dETL) composed of 2-[4-(9,10-dinaphthalen-2-yl-anthracen-2-yl)-phenyl]-1-phenyl-1H-benzoimidazole (ET) and hydroxyquinolinolato-lithium (Liq). A giant surface potential was generated at the surface of a constituent electron transport layer (ETL) that contained a higher concentration of Liq with high polarity. This giant surface potential simultaneously promoted the injection of trapped/accumulated electrons through the interface within dETL and the injection of holes from the anode, generating more exciton recombination events and ultimately enhancing efficiency by 133.0% and lifetime LT95 (luminance dropped by 5%) by 300% with an overshooting effect. Additionally, the degradation at the emitting layer was mitigated by shifting the degradation zone to the dETL, which was evidenced by laser desorption/ionization-time-of-flight (LDI-TOF) mass spectroscopy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.