{"title":"在 C57BL6 野生型老龄小鼠脑内一次性注射一碳代谢物可使海马恢复活力。","authors":"Alejandro Antón-Fernández, Rocío Peinado Cauchola, Félix Hernández, Jesús Ávila","doi":"10.1111/acel.14365","DOIUrl":null,"url":null,"abstract":"<p><p>The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14365"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice.\",\"authors\":\"Alejandro Antón-Fernández, Rocío Peinado Cauchola, Félix Hernández, Jesús Ávila\",\"doi\":\"10.1111/acel.14365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14365\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14365\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14365","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice.
The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.