基于同步自组装/矿化的矿化胶原支架的原花青素改性,用于骨再生。

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2024-10-02 DOI:10.1016/j.colsurfb.2024.114290
Qing Liu , Ye Zhang , Shuxian Yu , Chuanze Zhao , Yuqing Yang , Jianyu Yan , Yuge Wang , Dayong Liu , Ying Liu , Xu Zhang
{"title":"基于同步自组装/矿化的矿化胶原支架的原花青素改性,用于骨再生。","authors":"Qing Liu ,&nbsp;Ye Zhang ,&nbsp;Shuxian Yu ,&nbsp;Chuanze Zhao ,&nbsp;Yuqing Yang ,&nbsp;Jianyu Yan ,&nbsp;Yuge Wang ,&nbsp;Dayong Liu ,&nbsp;Ying Liu ,&nbsp;Xu Zhang","doi":"10.1016/j.colsurfb.2024.114290","DOIUrl":null,"url":null,"abstract":"<div><div>Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter’s ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of <em>Staphylococcus aureus.</em> The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"Article 114290"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration\",\"authors\":\"Qing Liu ,&nbsp;Ye Zhang ,&nbsp;Shuxian Yu ,&nbsp;Chuanze Zhao ,&nbsp;Yuqing Yang ,&nbsp;Jianyu Yan ,&nbsp;Yuge Wang ,&nbsp;Dayong Liu ,&nbsp;Ying Liu ,&nbsp;Xu Zhang\",\"doi\":\"10.1016/j.colsurfb.2024.114290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter’s ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of <em>Staphylococcus aureus.</em> The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"Article 114290\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524005496\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524005496","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白聚糖(PG)是骨组织发育过程中调节胶原蛋白形成和矿化的关键。人们提出了多种用于骨工程的 PG 改性胶原支架,以促进生物反应,并作为人工基质引导组织再生。然而,这些生物材料的抗感染性能不佳,导致临床预防需求得不到满足。因此,我们利用原花青素(PA)来模拟 PG 的功能,包括介导胶原组装和纤维内矿化,以优化支架的性能。PA 具有优异的抗菌性能,可在组织再生过程中赋予支架抗感染的作用。在纤维生成过程中添加 PA,胶原纤维出现不规则聚集,矿化度降低。相反,在胶原蛋白自组装后加入 PA,则提高了后者作为沉积模板的能力,并显著促进了矿物质离子的渗透,从而增强了纤维内矿化。PA 改性支架具有高亲水性和长期抗降解性。PA 的持续释放有效抑制了金黄色葡萄球菌的活性。该支架还表现出良好的生物相容性,并改善了腓骨临界大小缺损模型的骨再生。PA 的应用实现了一种具有双重功能的支架,其纤维内矿化和抗菌特性有利于骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proanthocyanidins modification of the mineralized collagen scaffold based on synchronous self-assembly/mineralization for bone regeneration
Proteoglycans (PG) is crucial for regulating collagen formation and mineralization during bone tissue development. A wide variety of PG-modified collagen scaffolds have been proposed for bone engineering application to promote biological responses and work as artificial matrices that guide tissue regeneration. However, poor performance of theses biomaterials against infections has led to an unmet need for clinical prevention. Therefore, we utilized proanthocyanidins (PA) to simulate the functions of PG, including mediating the collagen assembly and intrafibrillar mineralization, to optimize scaffolds performance. The excellent antibacterial properties of PA can endow the scaffolds with anti-infection effects in the process of tissue regeneration. When PA was added during fibrillogenesis, the collagen fibrils appeared irregular aggregation and the mineralization degree was reduced. In contrast, the addition of PA after collagen self-assembly improved the latter’s ability to act as a deposition template and remarkably promoted mineral ions infiltration, thus enhancing intrafibrillar mineralization. The PA-modified scaffold displayed a highly hydrophilicity behaviour and long-term resistance to degradation. The sustained release of PA effectively inhibited the activity of Staphylococcus aureus. The scaffold also showed excellent biocompatibility and improved bone regeneration in calvarial critical-size defect models. The application of PA enables a dual-function scaffold with favourable intrafibrillar mineralization and anti-bacterial properties for bone regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Innovative CuO-melanin hybrid nanoparticles and polytetrafluoroethylene for enhanced antifouling coatings. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Macrocycle-based self-assembled amphiphiles for co-delivery of therapeutic combinations to tumor Hollow-structured Zn-doped CeO2 mesoporous spheres boost enhanced antioxidant activity and synergistic bactericidal effect. One-step on-chip preparation of nanoparticle-conjugated red blood cell carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1