城市和工业废水混合:碳氮比对微藻类生产力和生物化合物积累的影响。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2024-10-08 DOI:10.1016/j.jenvman.2024.122760
Alexia Saleme Aona de Paula Pereira, Iara Barbosa Magalhães, Thiago Abrantes Silva, Alberto Jose Delgado Dos Reis, Eduardo de Aguiar do Couto, Maria Lucia Calijuri
{"title":"城市和工业废水混合:碳氮比对微藻类生产力和生物化合物积累的影响。","authors":"Alexia Saleme Aona de Paula Pereira, Iara Barbosa Magalhães, Thiago Abrantes Silva, Alberto Jose Delgado Dos Reis, Eduardo de Aguiar do Couto, Maria Lucia Calijuri","doi":"10.1016/j.jenvman.2024.122760","DOIUrl":null,"url":null,"abstract":"<p><p>Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Municipal and industrial wastewater blending: Effect of the carbon/nitrogen ratio on microalgae productivity and biocompound accumulation.\",\"authors\":\"Alexia Saleme Aona de Paula Pereira, Iara Barbosa Magalhães, Thiago Abrantes Silva, Alberto Jose Delgado Dos Reis, Eduardo de Aguiar do Couto, Maria Lucia Calijuri\",\"doi\":\"10.1016/j.jenvman.2024.122760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.122760\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.122760","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将市政废水(MW)和果汁加工产生的工业废水(IWJ)按不同比例混合,以评估碳/氮(C/N)比对污染物去除、微藻生物量(MB)培养以及类胡萝卜素和生物化合物积累的影响。在碳/氮比(>30.67)较高的处理中,未观察到甲基溴的生长。与完全由 MW 组成的处理(T7)相比,废水混合物有利于去除溶解有机碳(75.61% 和 81.90%)和可溶性化学需氧量(66.78%-88.85%)。处理 T3 和 T6(C/N 比分别为 30.67 和 7.52)的叶绿素-a 浓度较高,分别是处理 T7(C/N 比 1.75)的 1.47 和 1.54 倍。同时还观察到,30.67 的 C/N 比有利于碳水化合物和脂类的积累(分别为 30.07% 和 26.39%),而 7.52 的 C/N 比则提高了蛋白质的积累(33.00%)。脂肪酸 C16:0、C18:1、C18:2 和 C18:3 的浓度最高。此外,提高 C/N 比也是提高生物燃料脂肪酸产量的有效策略,这主要是由于短链脂肪酸(C16:0)的浓度增加。这些研究结果表明,混合废水不仅能提高处理效果,还能增加甲基溴中有价值的碳水化合物和脂类的积累,并优化用于生物燃料的脂肪酸的生产。这项研究标志着在利用废水生产的甲基溴的可行性方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Municipal and industrial wastewater blending: Effect of the carbon/nitrogen ratio on microalgae productivity and biocompound accumulation.

Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
A framework supporting green stormwater management for urban designers. Arthropods in soil reclamation and bioremediation: Functional roles, mechanisms and future perspective. Effect of thermophilic bacterial complex agents on synergistic humification of carbon and nitrogen during lignocellulose-rich kitchen waste composting. Evaluating sound attenuation of single trees using 3D information. Material demand and recycling potential driven by wind power expansion in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1