{"title":"评估不同认知任务对自主神经系统反应的影响:高精度、低成本补充方法的实施。","authors":"Nazli Karimi Ahmadi, Sezgi Firat Ozgur, Erhan Kiziltan","doi":"10.1002/brb3.70089","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>We developed a low-cost, user-friendly complementary research tool to evaluate autonomic nervous system (ANS) activity at varying levels of cognitive workload. This was achieved using visual stimuli as cognitive tasks, administered through a specially designed computer-based test battery.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>To assess sympathetic stress responses, skin conductance response (SCR) was measured, and electrocardiograms (ECG) were recorded to evaluate heart rate variability (HRV), an indicator of cardiac vagal tone. Twenty-five healthy adults participated in the study. SCR and ECG recordings were made during both tonic and phasic phases using a computer-based system designed for visual stimuli. Participants performed a button-pressing task upon seeing the target stimulus, and the relationship between reaction time (RT) and cognitive load was evaluated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Analysis of the data showed higher skin conductance levels (SCLs) during tasks compared to baseline, indicating successful elicitation of sympathetic responses. RTs differed significantly between simple and cognitive tasks, increasing with mental load. Additionally, significant changes in vagally mediated HRV parameters during tasks compared to baseline highlighted the impact of cognitive load on the parasympathetic branch of the ANS, thereby influencing the brain–heart connection.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our findings indicate that the developed research tool can successfully induce cognitive load, significantly affecting SCL, RTs, and HRV. This validates the tool's effectiveness in evaluating ANS responses to cognitive tasks.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"14 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460642/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Effects of Different Cognitive Tasks on Autonomic Nervous System Responses: Implementation of a High-Precision, Low-Cost Complementary Method\",\"authors\":\"Nazli Karimi Ahmadi, Sezgi Firat Ozgur, Erhan Kiziltan\",\"doi\":\"10.1002/brb3.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>We developed a low-cost, user-friendly complementary research tool to evaluate autonomic nervous system (ANS) activity at varying levels of cognitive workload. This was achieved using visual stimuli as cognitive tasks, administered through a specially designed computer-based test battery.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>To assess sympathetic stress responses, skin conductance response (SCR) was measured, and electrocardiograms (ECG) were recorded to evaluate heart rate variability (HRV), an indicator of cardiac vagal tone. Twenty-five healthy adults participated in the study. SCR and ECG recordings were made during both tonic and phasic phases using a computer-based system designed for visual stimuli. Participants performed a button-pressing task upon seeing the target stimulus, and the relationship between reaction time (RT) and cognitive load was evaluated.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Analysis of the data showed higher skin conductance levels (SCLs) during tasks compared to baseline, indicating successful elicitation of sympathetic responses. RTs differed significantly between simple and cognitive tasks, increasing with mental load. Additionally, significant changes in vagally mediated HRV parameters during tasks compared to baseline highlighted the impact of cognitive load on the parasympathetic branch of the ANS, thereby influencing the brain–heart connection.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our findings indicate that the developed research tool can successfully induce cognitive load, significantly affecting SCL, RTs, and HRV. This validates the tool's effectiveness in evaluating ANS responses to cognitive tasks.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460642/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70089\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70089","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Evaluating the Effects of Different Cognitive Tasks on Autonomic Nervous System Responses: Implementation of a High-Precision, Low-Cost Complementary Method
Introduction
We developed a low-cost, user-friendly complementary research tool to evaluate autonomic nervous system (ANS) activity at varying levels of cognitive workload. This was achieved using visual stimuli as cognitive tasks, administered through a specially designed computer-based test battery.
Methods
To assess sympathetic stress responses, skin conductance response (SCR) was measured, and electrocardiograms (ECG) were recorded to evaluate heart rate variability (HRV), an indicator of cardiac vagal tone. Twenty-five healthy adults participated in the study. SCR and ECG recordings were made during both tonic and phasic phases using a computer-based system designed for visual stimuli. Participants performed a button-pressing task upon seeing the target stimulus, and the relationship between reaction time (RT) and cognitive load was evaluated.
Results
Analysis of the data showed higher skin conductance levels (SCLs) during tasks compared to baseline, indicating successful elicitation of sympathetic responses. RTs differed significantly between simple and cognitive tasks, increasing with mental load. Additionally, significant changes in vagally mediated HRV parameters during tasks compared to baseline highlighted the impact of cognitive load on the parasympathetic branch of the ANS, thereby influencing the brain–heart connection.
Conclusion
Our findings indicate that the developed research tool can successfully induce cognitive load, significantly affecting SCL, RTs, and HRV. This validates the tool's effectiveness in evaluating ANS responses to cognitive tasks.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)