补体因子H是一种ICOS配体,可调节胶质瘤微环境中的集落细胞。

IF 8.1 1区 医学 Q1 IMMUNOLOGY Cancer immunology research Pub Date : 2024-10-10 DOI:10.1158/2326-6066.CIR-23-1092
Karolina I Smolag, Jakub Olszowka, Rebecca Rosberg, Elinn Johansson, Elisabet Marinko, Karin Leandersson, David J O'Connell, Valeria Governa, Emre Can Tuysuz, Mattias Belting, Alexander Pietras, Myriam Martin, Anna M Blom
{"title":"补体因子H是一种ICOS配体,可调节胶质瘤微环境中的集落细胞。","authors":"Karolina I Smolag, Jakub Olszowka, Rebecca Rosberg, Elinn Johansson, Elisabet Marinko, Karin Leandersson, David J O'Connell, Valeria Governa, Emre Can Tuysuz, Mattias Belting, Alexander Pietras, Myriam Martin, Anna M Blom","doi":"10.1158/2326-6066.CIR-23-1092","DOIUrl":null,"url":null,"abstract":"<p><p>The survival rate of glioma patients has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, where regulatory T cells (Tregs) play a pivotal role in immunological tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGF-beta (TGF-β) and IL-10, while also suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for glioma patients. We confirmed the effect of FH on glioma development in a mouse model, where FH knockdown was associated with decrease in number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (p=0.064). Since the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complement factor H is an ICOS ligand modulating Tregs in the glioma microenvironment.\",\"authors\":\"Karolina I Smolag, Jakub Olszowka, Rebecca Rosberg, Elinn Johansson, Elisabet Marinko, Karin Leandersson, David J O'Connell, Valeria Governa, Emre Can Tuysuz, Mattias Belting, Alexander Pietras, Myriam Martin, Anna M Blom\",\"doi\":\"10.1158/2326-6066.CIR-23-1092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The survival rate of glioma patients has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, where regulatory T cells (Tregs) play a pivotal role in immunological tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGF-beta (TGF-β) and IL-10, while also suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for glioma patients. We confirmed the effect of FH on glioma development in a mouse model, where FH knockdown was associated with decrease in number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (p=0.064). Since the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-23-1092\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-1092","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,尽管神经胶质瘤患者接受了积极的治疗,免疫疗法也取得了进展,但患者的存活率并没有显著提高。对治疗的有限反应部分归因于免疫抑制性肿瘤微环境,其中调节性T细胞(Tregs)在免疫耐受中发挥着关键作用。在这项研究中,我们研究了补体因子 H(FH)对胶质瘤微环境中 Tregs 的影响,发现 FH 是一种 ICOS 配体。FH 与这种免疫检查点分子的结合促进了 Tregs 的存活和功能,并诱导了 TGF-β(TGF-β)和 IL-10 的分泌,同时还抑制了 T 细胞的增殖。我们进一步证实,人和小鼠胶质瘤中的癌细胞会直接产生FH。数据库调查显示,FH表达的上调与Tregs的存在有关,并与胶质瘤患者的预后恶化相关。我们在小鼠模型中证实了 FH 对胶质瘤发展的影响,在该模型中,FH 基因敲除与 ICOS+ Tregs 数量减少有关,并显示出生存期延长的趋势(p=0.064)。由于Tregs的积累是一个很有前景的预后和治疗靶点,因此在评估胶质瘤免疫疗法的有效性和抗药性时应考虑评估FH的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complement factor H is an ICOS ligand modulating Tregs in the glioma microenvironment.

The survival rate of glioma patients has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, where regulatory T cells (Tregs) play a pivotal role in immunological tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGF-beta (TGF-β) and IL-10, while also suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for glioma patients. We confirmed the effect of FH on glioma development in a mouse model, where FH knockdown was associated with decrease in number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (p=0.064). Since the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
期刊最新文献
Setdb1-loss induces type-I interferons and immune clearance of melanoma. Hyperthermic intrathoracic chemotherapy modulates the immune microenvironment of pleural mesothelioma and improves the impact of dual immune checkpoint inhibition. CD49a targeting enhances NK cell function and antitumor immunity. A PSMA-targeted Tri-specific Killer Engager enhances NK cell cytotoxicity against prostate cancer. Correction: CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1