Jiachen Zhang, Junhyeong Park, Nancy Bui, Sara Forestieri, Elizabeth Mazmanian, Yucheng He, Cory Parmer, David C Quiros
{"title":"COVID-19 大流行对圣佩德罗湾港口温室气体和标准空气污染物排放的影响及未来政策影响。","authors":"Jiachen Zhang, Junhyeong Park, Nancy Bui, Sara Forestieri, Elizabeth Mazmanian, Yucheng He, Cory Parmer, David C Quiros","doi":"10.1088/1748-9326/ad7747","DOIUrl":null,"url":null,"abstract":"<p><p>The Ports of Los Angeles and Long Beach, collectively known as the San Pedro Bay Ports, serve as vital gateways for freight movement in the United States. The COVID-19 pandemic and other influencing factors disrupted freight movement and led to unprecedented cargo surge, vessel congestion, and increased air pollution and greenhouse gas emissions from seaport and connected freight system operations beginning in June 2020. In this study, we conducted the first comprehensive monthly assessment of the excess particulate matter, oxides of nitrogen (NO<sub>x</sub>), and carbon dioxide (CO<sub>2</sub>) emissions due to the heightened congestion and freight transport activity from ocean-going vessels (OGVs), trucks, locomotives, and cargo handling equipment (CHE) supporting seaport operations. Excess emissions peaked in October 2021 at 23 tons of NO<sub>x</sub> per day and 2001 tons of CO<sub>2</sub> per day. The strategic queuing system implemented in November 2021 significantly reduced the number of anchored and loitering OGVs and their emissions near the ports, even during continued high cargo throughput until Summer 2022. Looking forward, we analyzed projected emissions benefits of adopted California Air Resources Board regulations requiring cleaner and zero-emission trucks, locomotives, and CHE over the next decade. If a repeated port congestion event were to occur in 2035, NO<sub>x</sub> emissions from land-based freight transport should be lessened by more than 80%. Our study underscores the potential emissions impacts of disruptions to the freight transport network and the critical need to continue reducing its emissions in California and beyond.</p>","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"19 11","pages":"114023"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications.\",\"authors\":\"Jiachen Zhang, Junhyeong Park, Nancy Bui, Sara Forestieri, Elizabeth Mazmanian, Yucheng He, Cory Parmer, David C Quiros\",\"doi\":\"10.1088/1748-9326/ad7747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Ports of Los Angeles and Long Beach, collectively known as the San Pedro Bay Ports, serve as vital gateways for freight movement in the United States. The COVID-19 pandemic and other influencing factors disrupted freight movement and led to unprecedented cargo surge, vessel congestion, and increased air pollution and greenhouse gas emissions from seaport and connected freight system operations beginning in June 2020. In this study, we conducted the first comprehensive monthly assessment of the excess particulate matter, oxides of nitrogen (NO<sub>x</sub>), and carbon dioxide (CO<sub>2</sub>) emissions due to the heightened congestion and freight transport activity from ocean-going vessels (OGVs), trucks, locomotives, and cargo handling equipment (CHE) supporting seaport operations. Excess emissions peaked in October 2021 at 23 tons of NO<sub>x</sub> per day and 2001 tons of CO<sub>2</sub> per day. The strategic queuing system implemented in November 2021 significantly reduced the number of anchored and loitering OGVs and their emissions near the ports, even during continued high cargo throughput until Summer 2022. Looking forward, we analyzed projected emissions benefits of adopted California Air Resources Board regulations requiring cleaner and zero-emission trucks, locomotives, and CHE over the next decade. If a repeated port congestion event were to occur in 2035, NO<sub>x</sub> emissions from land-based freight transport should be lessened by more than 80%. Our study underscores the potential emissions impacts of disruptions to the freight transport network and the critical need to continue reducing its emissions in California and beyond.</p>\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"19 11\",\"pages\":\"114023\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad7747\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7747","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications.
The Ports of Los Angeles and Long Beach, collectively known as the San Pedro Bay Ports, serve as vital gateways for freight movement in the United States. The COVID-19 pandemic and other influencing factors disrupted freight movement and led to unprecedented cargo surge, vessel congestion, and increased air pollution and greenhouse gas emissions from seaport and connected freight system operations beginning in June 2020. In this study, we conducted the first comprehensive monthly assessment of the excess particulate matter, oxides of nitrogen (NOx), and carbon dioxide (CO2) emissions due to the heightened congestion and freight transport activity from ocean-going vessels (OGVs), trucks, locomotives, and cargo handling equipment (CHE) supporting seaport operations. Excess emissions peaked in October 2021 at 23 tons of NOx per day and 2001 tons of CO2 per day. The strategic queuing system implemented in November 2021 significantly reduced the number of anchored and loitering OGVs and their emissions near the ports, even during continued high cargo throughput until Summer 2022. Looking forward, we analyzed projected emissions benefits of adopted California Air Resources Board regulations requiring cleaner and zero-emission trucks, locomotives, and CHE over the next decade. If a repeated port congestion event were to occur in 2035, NOx emissions from land-based freight transport should be lessened by more than 80%. Our study underscores the potential emissions impacts of disruptions to the freight transport network and the critical need to continue reducing its emissions in California and beyond.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.