Xingchen Huo , Fengxia Zhao , Chunrong Yang , Jianguo Su
{"title":"抗氧化花青素协同免疫增强剂纳米肽 C-I20 可显著增强大口鲈鱼对大口鲈鱼病毒的保护作用。","authors":"Xingchen Huo , Fengxia Zhao , Chunrong Yang , Jianguo Su","doi":"10.1016/j.fsi.2024.109952","DOIUrl":null,"url":null,"abstract":"<div><div>Largemouth bass ranavirus (LMBV) infection results in huge economic losses in largemouth bass (<em>Micropterus salmoides</em>) industry. Nanopeptide C-I20 and anthocyanins have a positive effect on promoting immune responses and antioxidant mechanisms in several aquatic organisms, and are therefore used to inhibit LMBV infection. In this study, we developed an LMBV immersion challenge model using three different viral concentrations (1 × 10<sup>4</sup> copies/mL, 1 × 10<sup>5</sup> copies/mL, and 1 × 10<sup>6</sup> copies/mL) to infect largemouth bass, and LMBV-MCP mRNA expression was detected in infected fish. Following infection, the fish exhibited severe external ulceration, redness swelling, and darkening of the skin. Histopathological examination revealed significant necrosis and inflammation in muscle tissue, epithelial cell shedding in renal tubules, macrophage aggregation centers and cellular vacuolization in spleen and head kidney, and cellular hypertrophy in liver. To mitigate LMBV infection, we explored the protective effects of a combined treatment strategy involving C-I20 and anthocyanin. Overall, the combination of anthocyanin and C-I20 demonstrated the highest protective efficacy, significantly reducing viral loads in muscle, liver, spleen, and head kidney. Moreover, this treatment regimen enhanced antioxidant enzyme activities (T-AOC, TSOD, GSH-Px, CAT) and modulated important immune genes (IL-1, IL-8, TNF-α, IL-10, Mx, and IgM) expression. In conclusion, the synergistic application of anthocyanin and C-I20 demonstrates significant efficacy in mitigating LMBV infection. This research introduces a novel and promising approach to managing infectious diseases in aquaculture settings.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"154 ","pages":"Article 109952"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant anthocyanin synergistic immune enhancer nanopeptide C-I20 remarkably enhances the protective effect of largemouth bass against largemouth bass ranavirus\",\"authors\":\"Xingchen Huo , Fengxia Zhao , Chunrong Yang , Jianguo Su\",\"doi\":\"10.1016/j.fsi.2024.109952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Largemouth bass ranavirus (LMBV) infection results in huge economic losses in largemouth bass (<em>Micropterus salmoides</em>) industry. Nanopeptide C-I20 and anthocyanins have a positive effect on promoting immune responses and antioxidant mechanisms in several aquatic organisms, and are therefore used to inhibit LMBV infection. In this study, we developed an LMBV immersion challenge model using three different viral concentrations (1 × 10<sup>4</sup> copies/mL, 1 × 10<sup>5</sup> copies/mL, and 1 × 10<sup>6</sup> copies/mL) to infect largemouth bass, and LMBV-MCP mRNA expression was detected in infected fish. Following infection, the fish exhibited severe external ulceration, redness swelling, and darkening of the skin. Histopathological examination revealed significant necrosis and inflammation in muscle tissue, epithelial cell shedding in renal tubules, macrophage aggregation centers and cellular vacuolization in spleen and head kidney, and cellular hypertrophy in liver. To mitigate LMBV infection, we explored the protective effects of a combined treatment strategy involving C-I20 and anthocyanin. Overall, the combination of anthocyanin and C-I20 demonstrated the highest protective efficacy, significantly reducing viral loads in muscle, liver, spleen, and head kidney. Moreover, this treatment regimen enhanced antioxidant enzyme activities (T-AOC, TSOD, GSH-Px, CAT) and modulated important immune genes (IL-1, IL-8, TNF-α, IL-10, Mx, and IgM) expression. In conclusion, the synergistic application of anthocyanin and C-I20 demonstrates significant efficacy in mitigating LMBV infection. This research introduces a novel and promising approach to managing infectious diseases in aquaculture settings.</div></div>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\"154 \",\"pages\":\"Article 109952\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050464824005977\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824005977","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Antioxidant anthocyanin synergistic immune enhancer nanopeptide C-I20 remarkably enhances the protective effect of largemouth bass against largemouth bass ranavirus
Largemouth bass ranavirus (LMBV) infection results in huge economic losses in largemouth bass (Micropterus salmoides) industry. Nanopeptide C-I20 and anthocyanins have a positive effect on promoting immune responses and antioxidant mechanisms in several aquatic organisms, and are therefore used to inhibit LMBV infection. In this study, we developed an LMBV immersion challenge model using three different viral concentrations (1 × 104 copies/mL, 1 × 105 copies/mL, and 1 × 106 copies/mL) to infect largemouth bass, and LMBV-MCP mRNA expression was detected in infected fish. Following infection, the fish exhibited severe external ulceration, redness swelling, and darkening of the skin. Histopathological examination revealed significant necrosis and inflammation in muscle tissue, epithelial cell shedding in renal tubules, macrophage aggregation centers and cellular vacuolization in spleen and head kidney, and cellular hypertrophy in liver. To mitigate LMBV infection, we explored the protective effects of a combined treatment strategy involving C-I20 and anthocyanin. Overall, the combination of anthocyanin and C-I20 demonstrated the highest protective efficacy, significantly reducing viral loads in muscle, liver, spleen, and head kidney. Moreover, this treatment regimen enhanced antioxidant enzyme activities (T-AOC, TSOD, GSH-Px, CAT) and modulated important immune genes (IL-1, IL-8, TNF-α, IL-10, Mx, and IgM) expression. In conclusion, the synergistic application of anthocyanin and C-I20 demonstrates significant efficacy in mitigating LMBV infection. This research introduces a novel and promising approach to managing infectious diseases in aquaculture settings.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.