检测黄鳍鲷(Acanthopagrus latus)鳞屑病病毒的液滴数字 PCR 方法。

IF 4 2区 生物学 Q2 MICROBIOLOGY Frontiers in Microbiology Pub Date : 2024-09-25 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1444235
Bin Yin, Can Mao, Fangzhao Yu, Wangdong Li, Runhong Pan, Wei Feng, Yong Li
{"title":"检测黄鳍鲷(Acanthopagrus latus)鳞屑病病毒的液滴数字 PCR 方法。","authors":"Bin Yin, Can Mao, Fangzhao Yu, Wangdong Li, Runhong Pan, Wei Feng, Yong Li","doi":"10.3389/fmicb.2024.1444235","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (<i>Acanthopagrus latus</i>) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (<i>Acanthopagrus latus</i>) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461249/pdf/","citationCount":"0","resultStr":"{\"title\":\"A droplet digital PCR method for the detection of scale drop disease virus in yellowfin seabream (<i>Acanthopagrus latus</i>).\",\"authors\":\"Bin Yin, Can Mao, Fangzhao Yu, Wangdong Li, Runhong Pan, Wei Feng, Yong Li\",\"doi\":\"10.3389/fmicb.2024.1444235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (<i>Acanthopagrus latus</i>) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (<i>Acanthopagrus latus</i>) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.</p>\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2024.1444235\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1444235","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究根据实时荧光定量 PCR 的检测方法和原理,建立了黄鳍鲷鳞落病病毒(SDDV)的 ddPCR 检测方法。优化了反应条件,评估了灵敏度、特异性、准确性和重现性。结果表明,ddPCR方法的阈值线位置确定为1900;ddPCR方法检测SDDV的最佳退火温度为60℃;检出限为1.4-1.7拷贝/μL;除SDDV特异性扩增外,其他常见病毒的特异性检测结果均为阴性;重现性验证的相对标准偏差(RSD)为0.77%。用 ddPCR 方法分别检测了黄鳍鲷肝、脾、肾、心、肠、脑、血、肌肉、皮肤和腹水样本,共 3 个重复,结果与临床结果一致。该研究建立的ddPCR方法具有灵敏度高、特异性强、重现性好、步骤简单等优点,可用于黄鳍鲷SDDV临床样本的核酸检测,为黄鳍鲷SDDV发病早期的诊断提供了一种新的定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A droplet digital PCR method for the detection of scale drop disease virus in yellowfin seabream (Acanthopagrus latus).

In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (Acanthopagrus latus) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (Acanthopagrus latus) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Rhizobium acaciae and R. anhuiense are the dominant rhizobial symbionts of Pisum sativum L. from Yunnan-Guizhou Plateau. Development and characterization of a recombinant Senecavirus A expressing enhanced green fluorescent protein. Early warning of Aspergillus contamination in maize by gas chromatography-ion mobility spectrometry. Integrated approaches for plastic waste management. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1