Estephania Zluhan-Martínez, Claudio A Castañón-Suárez, Mario A Gutiérrez-Rodríguez, Fernando Lledías, Tao Zhang, Jesús T Peng, Jazz Dickinson, Diana Belén Sánchez Rodríguez, María de la Paz Sánchez, Berenice García-Ponce, Elena R Álvarez-Buylla, Adriana Garay-Arroyo
{"title":"MADS-box 基因 XAANTAL1 通过直接调控 PEROXIDASE 28 和 RETINOBLASTOMA RELATED 参与拟南芥主根生长和结肠干细胞模式对 ROS 的响应。","authors":"Estephania Zluhan-Martínez, Claudio A Castañón-Suárez, Mario A Gutiérrez-Rodríguez, Fernando Lledías, Tao Zhang, Jesús T Peng, Jazz Dickinson, Diana Belén Sánchez Rodríguez, María de la Paz Sánchez, Berenice García-Ponce, Elena R Álvarez-Buylla, Adriana Garay-Arroyo","doi":"10.1093/jxb/erae415","DOIUrl":null,"url":null,"abstract":"<p><p>The balance between cell growth, proliferation, and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The primary root of Arabidopsis thaliana has become a valuable system for unravelling such networks. Recently, the role of TFs that mediate ROS inhibition of primary root growth has begun to be characterized. This study demonstrates that the MADS-box TF gene XAANTAL1 (XAL1) is an essential regulator of hydrogen peroxide (H2O2) in primary root growth and root stem cell niche identity. Interestingly, our findings indicated that XAL1 acts as a positive regulator of H2O2 concentration in the root meristem by directly regulating genes involved in oxidative stress response, such as PEROXIDASE 28 (PER28). Moreover, we found that XAL1 is necessary for the H2O2-induced inhibition of primary root growth through the negative regulation of peroxidase and catalase activities. Furthermore, XAL1, in conjunction with RETINOBLASTOMA-RELATED (RBR), is essential for positively regulating the differentiation of columella stem cells and for participating in primary root growth inhibition in response to oxidative stress induced by H2O2 treatment.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"411-432"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714753/pdf/","citationCount":"0","resultStr":"{\"title\":\"The MADS-box gene XAANTAL1 participates in Arabidopsis thaliana primary root growth and columella stem cell patterns in response to ROS, via direct regulation of PEROXIDASE 28 and RETINOBLASTOMA-RELATED genes.\",\"authors\":\"Estephania Zluhan-Martínez, Claudio A Castañón-Suárez, Mario A Gutiérrez-Rodríguez, Fernando Lledías, Tao Zhang, Jesús T Peng, Jazz Dickinson, Diana Belén Sánchez Rodríguez, María de la Paz Sánchez, Berenice García-Ponce, Elena R Álvarez-Buylla, Adriana Garay-Arroyo\",\"doi\":\"10.1093/jxb/erae415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The balance between cell growth, proliferation, and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The primary root of Arabidopsis thaliana has become a valuable system for unravelling such networks. Recently, the role of TFs that mediate ROS inhibition of primary root growth has begun to be characterized. This study demonstrates that the MADS-box TF gene XAANTAL1 (XAL1) is an essential regulator of hydrogen peroxide (H2O2) in primary root growth and root stem cell niche identity. Interestingly, our findings indicated that XAL1 acts as a positive regulator of H2O2 concentration in the root meristem by directly regulating genes involved in oxidative stress response, such as PEROXIDASE 28 (PER28). Moreover, we found that XAL1 is necessary for the H2O2-induced inhibition of primary root growth through the negative regulation of peroxidase and catalase activities. Furthermore, XAL1, in conjunction with RETINOBLASTOMA-RELATED (RBR), is essential for positively regulating the differentiation of columella stem cells and for participating in primary root growth inhibition in response to oxidative stress induced by H2O2 treatment.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"411-432\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae415\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae415","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The MADS-box gene XAANTAL1 participates in Arabidopsis thaliana primary root growth and columella stem cell patterns in response to ROS, via direct regulation of PEROXIDASE 28 and RETINOBLASTOMA-RELATED genes.
The balance between cell growth, proliferation, and differentiation emerges from gene regulatory networks coupled to various signal transduction pathways, including reactive oxygen species (ROS) and transcription factors (TFs), enabling developmental responses to environmental cues. The primary root of Arabidopsis thaliana has become a valuable system for unravelling such networks. Recently, the role of TFs that mediate ROS inhibition of primary root growth has begun to be characterized. This study demonstrates that the MADS-box TF gene XAANTAL1 (XAL1) is an essential regulator of hydrogen peroxide (H2O2) in primary root growth and root stem cell niche identity. Interestingly, our findings indicated that XAL1 acts as a positive regulator of H2O2 concentration in the root meristem by directly regulating genes involved in oxidative stress response, such as PEROXIDASE 28 (PER28). Moreover, we found that XAL1 is necessary for the H2O2-induced inhibition of primary root growth through the negative regulation of peroxidase and catalase activities. Furthermore, XAL1, in conjunction with RETINOBLASTOMA-RELATED (RBR), is essential for positively regulating the differentiation of columella stem cells and for participating in primary root growth inhibition in response to oxidative stress induced by H2O2 treatment.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.