Pradeep Kumar Sharma, Chetan Kachhara, N Laihnuna, Sanjay Kedia
{"title":"原始和掺钛 Mg2Si 的弹性机械热力学和热电特性:密度泛函理论研究。","authors":"Pradeep Kumar Sharma, Chetan Kachhara, N Laihnuna, Sanjay Kedia","doi":"10.1088/1361-648X/ad84a9","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report a systematic investigation of the effect of Titanium doping on the structural, elastic, mechanical, thermodynamic, and thermoelectric (TE) dynamics of Mg<sub>2</sub>Si Compounds using first-principle investigation. The present study has been carried out using the full potential linearized augmented plane wave method as implemented in<i>Wien2k</i>code under<i>mBJ</i>exchange potentials. The investigations revealed that Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compounds have structural stability with cubic phase (<i>Fm-3m</i>symmetry) and possess degenerate semiconducting nature. The analysis of elastic constants revealed mechanical stability of the investigated compounds following Born criteria. Thermodynamic investigations have been carried out in the temperature range of 100-1500 K at zero pressure and the quantities like heat capacity, Debye temperature, Grüneisen constant, and thermal expansion coefficient have been critically analyzed. Lastly, the TE performance of Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compounds has been predicted by estimating the thermopower (<i>S</i><sup>2</sup><i>σ</i>) and TE figure of merit (<i>zT</i>) in the temperature range of 300-1500 K. The predicted value of<i>zT</i><sub>max</sub>for Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compound is 0.67 at 800 K for<i>x</i>= 0.25 titanium content, suggesting materials promising application for TE energy harvesting and mechanical devices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic mechanical thermodynamic and thermoelectric properties of pristine and titanium doped Mg<sub>2</sub>Si: a density functional theory study.\",\"authors\":\"Pradeep Kumar Sharma, Chetan Kachhara, N Laihnuna, Sanjay Kedia\",\"doi\":\"10.1088/1361-648X/ad84a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we report a systematic investigation of the effect of Titanium doping on the structural, elastic, mechanical, thermodynamic, and thermoelectric (TE) dynamics of Mg<sub>2</sub>Si Compounds using first-principle investigation. The present study has been carried out using the full potential linearized augmented plane wave method as implemented in<i>Wien2k</i>code under<i>mBJ</i>exchange potentials. The investigations revealed that Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compounds have structural stability with cubic phase (<i>Fm-3m</i>symmetry) and possess degenerate semiconducting nature. The analysis of elastic constants revealed mechanical stability of the investigated compounds following Born criteria. Thermodynamic investigations have been carried out in the temperature range of 100-1500 K at zero pressure and the quantities like heat capacity, Debye temperature, Grüneisen constant, and thermal expansion coefficient have been critically analyzed. Lastly, the TE performance of Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compounds has been predicted by estimating the thermopower (<i>S</i><sup>2</sup><i>σ</i>) and TE figure of merit (<i>zT</i>) in the temperature range of 300-1500 K. The predicted value of<i>zT</i><sub>max</sub>for Mg<sub>2-<i>x</i></sub>Ti<i><sub>x</sub></i>Si compound is 0.67 at 800 K for<i>x</i>= 0.25 titanium content, suggesting materials promising application for TE energy harvesting and mechanical devices.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad84a9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad84a9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
在此,我们利用第一原理研究报告了钛掺杂对 Mg2Si 化合物的结构、弹性、机械、热力学和热电(TE)动力学的影响。本研究采用 Wien2k 代码中的 FP-LAPW(全势线性化增强平面波)方法,在 mBJ 交换势下进行。研究发现,Mg2-xTixSi 复合物具有立方相(Fm-3m 对称性)的结构稳定性,并具有退化半导体性质。对弹性常数的分析表明,所研究的化合物具有符合博恩标准的机械稳定性。在零压力下,在 100 至 1500 K 的温度范围内进行了热力学研究,并对热容量、德拜温度、格吕内森常数和热膨胀系数等量进行了严格分析。最后,通过估算 300 至 1500 K 温度范围内的热功率 (S2σ) 和热电功勋值 (zT),预测了 Mg2-xTixSi 复合物的热电性能。当 x = 0.25 钛含量时,Mg2-xTixSi 复合物在 800 K 时的 zTmax 值为 0.67,这表明材料有望应用于热电能量采集和机械设备。
Elastic mechanical thermodynamic and thermoelectric properties of pristine and titanium doped Mg2Si: a density functional theory study.
Herein, we report a systematic investigation of the effect of Titanium doping on the structural, elastic, mechanical, thermodynamic, and thermoelectric (TE) dynamics of Mg2Si Compounds using first-principle investigation. The present study has been carried out using the full potential linearized augmented plane wave method as implemented inWien2kcode undermBJexchange potentials. The investigations revealed that Mg2-xTixSi compounds have structural stability with cubic phase (Fm-3msymmetry) and possess degenerate semiconducting nature. The analysis of elastic constants revealed mechanical stability of the investigated compounds following Born criteria. Thermodynamic investigations have been carried out in the temperature range of 100-1500 K at zero pressure and the quantities like heat capacity, Debye temperature, Grüneisen constant, and thermal expansion coefficient have been critically analyzed. Lastly, the TE performance of Mg2-xTixSi compounds has been predicted by estimating the thermopower (S2σ) and TE figure of merit (zT) in the temperature range of 300-1500 K. The predicted value ofzTmaxfor Mg2-xTixSi compound is 0.67 at 800 K forx= 0.25 titanium content, suggesting materials promising application for TE energy harvesting and mechanical devices.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.