在温暖环境条件下进行真实世界长时间步行运动时估计核心温度算法的有效性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-01 DOI:10.1016/j.jtherbio.2024.103982
Mandy A.G. Peggen , Coen C.W.G. Bongers , Johannus Q. de Korte , Bertil J. Veenstra , Koen Levels , Maria T.E. Hopman , Thijs M.H. Eijsvogels
{"title":"在温暖环境条件下进行真实世界长时间步行运动时估计核心温度算法的有效性。","authors":"Mandy A.G. Peggen ,&nbsp;Coen C.W.G. Bongers ,&nbsp;Johannus Q. de Korte ,&nbsp;Bertil J. Veenstra ,&nbsp;Koen Levels ,&nbsp;Maria T.E. Hopman ,&nbsp;Thijs M.H. Eijsvogels","doi":"10.1016/j.jtherbio.2024.103982","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Non-invasive methods to estimate core body temperature (T<sub>C</sub>) are increasingly available. We examined the group-level and individual participant-level validity of the Estimated Core Temperature (ECTemp™) algorithm to estimate T<sub>C</sub> based on sequential heart rate (HR) measurements during real-world prolonged walking exercise in warm ambient conditions.</div></div><div><h3>Methods</h3><div>Participants walked 30 (n = 3), 40 (n = 13) or 50 (n = 2) km on a self-selected pace during which T<sub>C</sub> was measured every minute using an ingestible temperature capsule. HR was measured every second and used to compute the estimated core temperature (T<sub>C-est</sub>) using the ECTemp™ algorithm. Bland-Altman analyses were performed to assess agreement between T<sub>C</sub> and T<sub>C-est</sub>. A systematic bias &lt;0.1 °C was considered acceptable.</div></div><div><h3>Results</h3><div>18 participants (56 ± 16 years, 11 males) walked for 549 min (range 418–645 min), while ambient temperature increased from 22 °C to 29 °C. Average HR was 108 ± 13 bpm and T<sub>C</sub> ranged from 36.9 to 39.2 °C, whereas T<sub>C-est</sub> ranged from 36.8 to 38.9 °C (n = 8572 observations). Group level data revealed a systematic bias of 0.09 °C (p &lt; 0.001) with limits of agreements of ±0.44 °C. A weak correlation was found between T<sub>C</sub> and T<sub>C-est</sub> (r = 0.28; p &lt; 0.001). Large inter-individual differences in bias (range −0.45 °C to 0.62 °C) and correlation coefficients (range −0.09 to 0.95) were found, while only 3 participants (17%) had an acceptable systemic bias of &lt;0.1 °C.</div></div><div><h3>Conclusion</h3><div>Group level data showed that the ECTemp™ algorithm had an acceptable systematic bias during prolonged walking exercise in warm ambient conditions, but only 3 out of 18 participants had an acceptable systemic bias. Future studies are needed to improve the accuracy of the algorithm before individual users can rely on their estimated T<sub>C</sub> during real-world exercise.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validity of the estimated core temperature algorithm during real-world prolonged walking exercise under warm ambient conditions\",\"authors\":\"Mandy A.G. Peggen ,&nbsp;Coen C.W.G. Bongers ,&nbsp;Johannus Q. de Korte ,&nbsp;Bertil J. Veenstra ,&nbsp;Koen Levels ,&nbsp;Maria T.E. Hopman ,&nbsp;Thijs M.H. Eijsvogels\",\"doi\":\"10.1016/j.jtherbio.2024.103982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Non-invasive methods to estimate core body temperature (T<sub>C</sub>) are increasingly available. We examined the group-level and individual participant-level validity of the Estimated Core Temperature (ECTemp™) algorithm to estimate T<sub>C</sub> based on sequential heart rate (HR) measurements during real-world prolonged walking exercise in warm ambient conditions.</div></div><div><h3>Methods</h3><div>Participants walked 30 (n = 3), 40 (n = 13) or 50 (n = 2) km on a self-selected pace during which T<sub>C</sub> was measured every minute using an ingestible temperature capsule. HR was measured every second and used to compute the estimated core temperature (T<sub>C-est</sub>) using the ECTemp™ algorithm. Bland-Altman analyses were performed to assess agreement between T<sub>C</sub> and T<sub>C-est</sub>. A systematic bias &lt;0.1 °C was considered acceptable.</div></div><div><h3>Results</h3><div>18 participants (56 ± 16 years, 11 males) walked for 549 min (range 418–645 min), while ambient temperature increased from 22 °C to 29 °C. Average HR was 108 ± 13 bpm and T<sub>C</sub> ranged from 36.9 to 39.2 °C, whereas T<sub>C-est</sub> ranged from 36.8 to 38.9 °C (n = 8572 observations). Group level data revealed a systematic bias of 0.09 °C (p &lt; 0.001) with limits of agreements of ±0.44 °C. A weak correlation was found between T<sub>C</sub> and T<sub>C-est</sub> (r = 0.28; p &lt; 0.001). Large inter-individual differences in bias (range −0.45 °C to 0.62 °C) and correlation coefficients (range −0.09 to 0.95) were found, while only 3 participants (17%) had an acceptable systemic bias of &lt;0.1 °C.</div></div><div><h3>Conclusion</h3><div>Group level data showed that the ECTemp™ algorithm had an acceptable systematic bias during prolonged walking exercise in warm ambient conditions, but only 3 out of 18 participants had an acceptable systemic bias. Future studies are needed to improve the accuracy of the algorithm before individual users can rely on their estimated T<sub>C</sub> during real-world exercise.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524002006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524002006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:估计核心体温(TC)的无创方法越来越多。我们研究了在温暖环境条件下进行真实世界长时间步行运动时,根据连续心率(HR)测量结果估算核心体温(ECTemp™)算法在群体和个体参与者层面的有效性:方法:参与者以自选速度步行 30(n = 3)、40(n = 13)或 50(n = 2)公里,期间每分钟使用可摄入体温胶囊测量一次体温。每秒测量一次心率,并使用 ECTemp™ 算法计算估计核心温度(TC-est)。为评估 TC 和 TC-est 之间的一致性,进行了 Bland-Altman 分析。系统性偏差 结果:18 名参与者(56 ± 16 岁,11 名男性)行走了 549 分钟(418-645 分钟不等),环境温度从 22 °C 升至 29 °C。平均心率为 108 ± 13 bpm,TC 范围为 36.9 至 39.2 °C,TC-est 范围为 36.8 至 38.9 °C(n = 8572 个观测值)。组级数据显示系统偏差为 0.09 °C(p C),TC-est(r = 0.28;p 结论:ECT 和 TC-est 的系统偏差为 0.09 °C(p C):组级数据显示,在温暖环境条件下进行长时间步行运动时,ECTemp™ 算法具有可接受的系统偏差,但 18 名参与者中只有 3 人具有可接受的系统偏差。未来的研究需要提高该算法的准确性,才能让个人用户在实际运动中依赖其估计的血压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validity of the estimated core temperature algorithm during real-world prolonged walking exercise under warm ambient conditions

Background

Non-invasive methods to estimate core body temperature (TC) are increasingly available. We examined the group-level and individual participant-level validity of the Estimated Core Temperature (ECTemp™) algorithm to estimate TC based on sequential heart rate (HR) measurements during real-world prolonged walking exercise in warm ambient conditions.

Methods

Participants walked 30 (n = 3), 40 (n = 13) or 50 (n = 2) km on a self-selected pace during which TC was measured every minute using an ingestible temperature capsule. HR was measured every second and used to compute the estimated core temperature (TC-est) using the ECTemp™ algorithm. Bland-Altman analyses were performed to assess agreement between TC and TC-est. A systematic bias <0.1 °C was considered acceptable.

Results

18 participants (56 ± 16 years, 11 males) walked for 549 min (range 418–645 min), while ambient temperature increased from 22 °C to 29 °C. Average HR was 108 ± 13 bpm and TC ranged from 36.9 to 39.2 °C, whereas TC-est ranged from 36.8 to 38.9 °C (n = 8572 observations). Group level data revealed a systematic bias of 0.09 °C (p < 0.001) with limits of agreements of ±0.44 °C. A weak correlation was found between TC and TC-est (r = 0.28; p < 0.001). Large inter-individual differences in bias (range −0.45 °C to 0.62 °C) and correlation coefficients (range −0.09 to 0.95) were found, while only 3 participants (17%) had an acceptable systemic bias of <0.1 °C.

Conclusion

Group level data showed that the ECTemp™ algorithm had an acceptable systematic bias during prolonged walking exercise in warm ambient conditions, but only 3 out of 18 participants had an acceptable systemic bias. Future studies are needed to improve the accuracy of the algorithm before individual users can rely on their estimated TC during real-world exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1