Anele Mdunyelwa , Colette Seema , Anna Mabaso , Khamusi Mlambo , Mandisa Mtsweni , Mathapelo Maphanga , Elizabeth Rammutla , Hugo A. Tempelman , Chijioke N. Umunnakwe
{"title":"对 Seegene AllplexTM RV Master 检测试剂盒一步法同时检测鼻咽部标本中八种呼吸道病毒的评估。","authors":"Anele Mdunyelwa , Colette Seema , Anna Mabaso , Khamusi Mlambo , Mandisa Mtsweni , Mathapelo Maphanga , Elizabeth Rammutla , Hugo A. Tempelman , Chijioke N. Umunnakwe","doi":"10.1016/j.jviromet.2024.115042","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The Seegene Allplex™ RV Master (RVM) assay is a one-step multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) system for detecting eight viral respiratory pathogens from nasopharyngeal swab, aspirate, and bronchoalveolar lavage specimens. The eight RVM targets are: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (Flu A), Influenza B (Flu B), Human respiratory syncytial virus (RSV), adenovirus (AdV), rhinovirus (HRV), parainfluenza virus (PIV), and metapneumovirus (MPV). The assay is based on Seegene’s multiple detection temperature (MuDT) technology and provides cycle threshold (Ct) values for each of its viral targets upon PCR completion.</div></div><div><h3>Objective</h3><div>We aimed to evaluate the diagnostic performance of the RVM assay by calculating sensitivity, specificity, accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Positive Percent Agreement (PPA), Negative Percent Agreement (NPA), and Overall Percent Agreement (OPA) compared to definite diagnosis and analogous reference assays.</div></div><div><h3>Study design</h3><div>Diagnostic sensitivity, specificity, accuracy, PPV, and NPV were calculated by comparing the results of the RVM assay to that of definite diagnosis assays; while PPA, NPA, and OPA were calculated by comparing results of the RVM assay to that of analogous reference products. Definite diagnosis and reference methods comprised whole genome sequencing and PCR genotyping, the Allplex™ SARS-CoV-2/FluA/FluB/RSV and Respiratory Panels 1, 2, and 3 assays (Seegene), and the Xpert® Xpress SARS-CoV-2/FluA/FluB/RSV Plus assay (Cepheid). Reproducibility of the RVM assay using fully-automated and semi-automated nucleic acid (NA) extraction workflows and as performed by independent operators was also assessed. In total, 249 positive respiratory specimens and at least 50 negative specimens for each target tested were used for this evaluation study.</div></div><div><h3>Results</h3><div>Sensitivity, specificity, accuracy, PPV, NPV, PPA, NPA, and OPA ranged from 95.7 % to 100 % for detecting all eight targets tested on the RVM assay. Reproducibility PPA, NPA, and OPA between automated and semi-automated NA extraction workflows were all >97.9 %, while the reproducibility PPA, NPA and OPA between independent operators were all 100 %.</div></div><div><h3>Conclusion</h3><div>These results demonstrate a high level of sensitivity, specificity, accuracy and diagnostic predictive value of the RVM assay and high agreement with comparable reference assays in identifying all eight of its targets. Taken together, our study underscores the diagnostic utility of the RVM assay in detecting eight viral respiratory pathogens.</div></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"331 ","pages":"Article 115042"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Seegene Allplex™ RV master assay for one-step simultaneous detection of eight respiratory viruses in nasopharyngeal specimens\",\"authors\":\"Anele Mdunyelwa , Colette Seema , Anna Mabaso , Khamusi Mlambo , Mandisa Mtsweni , Mathapelo Maphanga , Elizabeth Rammutla , Hugo A. Tempelman , Chijioke N. Umunnakwe\",\"doi\":\"10.1016/j.jviromet.2024.115042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The Seegene Allplex™ RV Master (RVM) assay is a one-step multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) system for detecting eight viral respiratory pathogens from nasopharyngeal swab, aspirate, and bronchoalveolar lavage specimens. The eight RVM targets are: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (Flu A), Influenza B (Flu B), Human respiratory syncytial virus (RSV), adenovirus (AdV), rhinovirus (HRV), parainfluenza virus (PIV), and metapneumovirus (MPV). The assay is based on Seegene’s multiple detection temperature (MuDT) technology and provides cycle threshold (Ct) values for each of its viral targets upon PCR completion.</div></div><div><h3>Objective</h3><div>We aimed to evaluate the diagnostic performance of the RVM assay by calculating sensitivity, specificity, accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Positive Percent Agreement (PPA), Negative Percent Agreement (NPA), and Overall Percent Agreement (OPA) compared to definite diagnosis and analogous reference assays.</div></div><div><h3>Study design</h3><div>Diagnostic sensitivity, specificity, accuracy, PPV, and NPV were calculated by comparing the results of the RVM assay to that of definite diagnosis assays; while PPA, NPA, and OPA were calculated by comparing results of the RVM assay to that of analogous reference products. Definite diagnosis and reference methods comprised whole genome sequencing and PCR genotyping, the Allplex™ SARS-CoV-2/FluA/FluB/RSV and Respiratory Panels 1, 2, and 3 assays (Seegene), and the Xpert® Xpress SARS-CoV-2/FluA/FluB/RSV Plus assay (Cepheid). Reproducibility of the RVM assay using fully-automated and semi-automated nucleic acid (NA) extraction workflows and as performed by independent operators was also assessed. In total, 249 positive respiratory specimens and at least 50 negative specimens for each target tested were used for this evaluation study.</div></div><div><h3>Results</h3><div>Sensitivity, specificity, accuracy, PPV, NPV, PPA, NPA, and OPA ranged from 95.7 % to 100 % for detecting all eight targets tested on the RVM assay. Reproducibility PPA, NPA, and OPA between automated and semi-automated NA extraction workflows were all >97.9 %, while the reproducibility PPA, NPA and OPA between independent operators were all 100 %.</div></div><div><h3>Conclusion</h3><div>These results demonstrate a high level of sensitivity, specificity, accuracy and diagnostic predictive value of the RVM assay and high agreement with comparable reference assays in identifying all eight of its targets. Taken together, our study underscores the diagnostic utility of the RVM assay in detecting eight viral respiratory pathogens.</div></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":\"331 \",\"pages\":\"Article 115042\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166093424001666\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Evaluation of the Seegene Allplex™ RV master assay for one-step simultaneous detection of eight respiratory viruses in nasopharyngeal specimens
Background
The Seegene Allplex™ RV Master (RVM) assay is a one-step multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) system for detecting eight viral respiratory pathogens from nasopharyngeal swab, aspirate, and bronchoalveolar lavage specimens. The eight RVM targets are: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (Flu A), Influenza B (Flu B), Human respiratory syncytial virus (RSV), adenovirus (AdV), rhinovirus (HRV), parainfluenza virus (PIV), and metapneumovirus (MPV). The assay is based on Seegene’s multiple detection temperature (MuDT) technology and provides cycle threshold (Ct) values for each of its viral targets upon PCR completion.
Objective
We aimed to evaluate the diagnostic performance of the RVM assay by calculating sensitivity, specificity, accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Positive Percent Agreement (PPA), Negative Percent Agreement (NPA), and Overall Percent Agreement (OPA) compared to definite diagnosis and analogous reference assays.
Study design
Diagnostic sensitivity, specificity, accuracy, PPV, and NPV were calculated by comparing the results of the RVM assay to that of definite diagnosis assays; while PPA, NPA, and OPA were calculated by comparing results of the RVM assay to that of analogous reference products. Definite diagnosis and reference methods comprised whole genome sequencing and PCR genotyping, the Allplex™ SARS-CoV-2/FluA/FluB/RSV and Respiratory Panels 1, 2, and 3 assays (Seegene), and the Xpert® Xpress SARS-CoV-2/FluA/FluB/RSV Plus assay (Cepheid). Reproducibility of the RVM assay using fully-automated and semi-automated nucleic acid (NA) extraction workflows and as performed by independent operators was also assessed. In total, 249 positive respiratory specimens and at least 50 negative specimens for each target tested were used for this evaluation study.
Results
Sensitivity, specificity, accuracy, PPV, NPV, PPA, NPA, and OPA ranged from 95.7 % to 100 % for detecting all eight targets tested on the RVM assay. Reproducibility PPA, NPA, and OPA between automated and semi-automated NA extraction workflows were all >97.9 %, while the reproducibility PPA, NPA and OPA between independent operators were all 100 %.
Conclusion
These results demonstrate a high level of sensitivity, specificity, accuracy and diagnostic predictive value of the RVM assay and high agreement with comparable reference assays in identifying all eight of its targets. Taken together, our study underscores the diagnostic utility of the RVM assay in detecting eight viral respiratory pathogens.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.