{"title":"优化吲哚菁绿介导的乳腺癌异种移植物光动力疗法的近红外激光照射和光敏剂累积期:重点关注治疗和表征。","authors":"Hasim Ozgur Tabakoglu, Tuğba Kiriş Aydoğan, Ayşenur Kiriş, Saadet Akbulut","doi":"10.1007/s10103-024-04202-z","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment approach. Indocyanine green (ICG) is a water-soluble tricarbocyanine dye with a peak absorption wavelength of around 800 nm and possesses the capacity to produce reactive oxygen species. FTIR spectroscopy is rarely used and offers insights into molecular changes in cancer studies. MCF-7 cells were injected into Nude mouse. Once the tumor had grown to a size of 3-4 mm, mice were randomized into the 12 PDT groups. After each mouse received 5 mg/kg of ICG, they were photo-irradiated with a diode laser emitting light at 809 nm, followed by waiting intervals of 0, 30, 60, and 90 min. Laser irradiation parameters were 150, 250, 500 mW/cm2 and irradiation duration was 1200s. The tumor size was measured every day for four days. The FTIR spectroscopy was used to perform spectral analysis on tumor tissue samples. Four distinct regions (3600-2800 cm-1, 1750-1550 cm-1, 1540-1450 cm-1, and 1700-1100 cm-1) were analyzed, and Hierarchical Cluster study was carried out. A decrease in tumor volume was observed with all PDT applications, except, increases in tumor volume was observed at 150mW 90-minute group. PDT administered after 90 min revealed variations in 150mW and 250mW laser powers in the 3600 cm-1-2800 cm-1 range. The 250mW and 500mW applications resulted in a considerable reduction in fibroadenoma and carcinoma tissues, according to an analysis comparing the A1695 / A1635 ratio. It is proposed that the ideal treatments for further investigation have a power output of 250 mW.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"252"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing near infrared laser irradiation and photosensitizer accumulation period for indocyanine green-mediated photodynamic therapy in breast cancer xenografts: a focus on treatment and characterization.\",\"authors\":\"Hasim Ozgur Tabakoglu, Tuğba Kiriş Aydoğan, Ayşenur Kiriş, Saadet Akbulut\",\"doi\":\"10.1007/s10103-024-04202-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment approach. Indocyanine green (ICG) is a water-soluble tricarbocyanine dye with a peak absorption wavelength of around 800 nm and possesses the capacity to produce reactive oxygen species. FTIR spectroscopy is rarely used and offers insights into molecular changes in cancer studies. MCF-7 cells were injected into Nude mouse. Once the tumor had grown to a size of 3-4 mm, mice were randomized into the 12 PDT groups. After each mouse received 5 mg/kg of ICG, they were photo-irradiated with a diode laser emitting light at 809 nm, followed by waiting intervals of 0, 30, 60, and 90 min. Laser irradiation parameters were 150, 250, 500 mW/cm2 and irradiation duration was 1200s. The tumor size was measured every day for four days. The FTIR spectroscopy was used to perform spectral analysis on tumor tissue samples. Four distinct regions (3600-2800 cm-1, 1750-1550 cm-1, 1540-1450 cm-1, and 1700-1100 cm-1) were analyzed, and Hierarchical Cluster study was carried out. A decrease in tumor volume was observed with all PDT applications, except, increases in tumor volume was observed at 150mW 90-minute group. PDT administered after 90 min revealed variations in 150mW and 250mW laser powers in the 3600 cm-1-2800 cm-1 range. The 250mW and 500mW applications resulted in a considerable reduction in fibroadenoma and carcinoma tissues, according to an analysis comparing the A1695 / A1635 ratio. It is proposed that the ideal treatments for further investigation have a power output of 250 mW.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":\"39 1\",\"pages\":\"252\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-024-04202-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04202-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optimizing near infrared laser irradiation and photosensitizer accumulation period for indocyanine green-mediated photodynamic therapy in breast cancer xenografts: a focus on treatment and characterization.
Photodynamic therapy (PDT) is a promising cancer treatment approach. Indocyanine green (ICG) is a water-soluble tricarbocyanine dye with a peak absorption wavelength of around 800 nm and possesses the capacity to produce reactive oxygen species. FTIR spectroscopy is rarely used and offers insights into molecular changes in cancer studies. MCF-7 cells were injected into Nude mouse. Once the tumor had grown to a size of 3-4 mm, mice were randomized into the 12 PDT groups. After each mouse received 5 mg/kg of ICG, they were photo-irradiated with a diode laser emitting light at 809 nm, followed by waiting intervals of 0, 30, 60, and 90 min. Laser irradiation parameters were 150, 250, 500 mW/cm2 and irradiation duration was 1200s. The tumor size was measured every day for four days. The FTIR spectroscopy was used to perform spectral analysis on tumor tissue samples. Four distinct regions (3600-2800 cm-1, 1750-1550 cm-1, 1540-1450 cm-1, and 1700-1100 cm-1) were analyzed, and Hierarchical Cluster study was carried out. A decrease in tumor volume was observed with all PDT applications, except, increases in tumor volume was observed at 150mW 90-minute group. PDT administered after 90 min revealed variations in 150mW and 250mW laser powers in the 3600 cm-1-2800 cm-1 range. The 250mW and 500mW applications resulted in a considerable reduction in fibroadenoma and carcinoma tissues, according to an analysis comparing the A1695 / A1635 ratio. It is proposed that the ideal treatments for further investigation have a power output of 250 mW.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.