利用分子建模预测表皮生长因子受体外显子 20 基因突变的非小细胞肺癌患者的治疗效果。

IF 4.5 2区 医学 Q1 ONCOLOGY Lung Cancer Pub Date : 2024-09-30 DOI:10.1016/j.lungcan.2024.107973
F. Zwierenga , L. Zhang , J. Melcr , E. Schuuring , B.A.M.H. van Veggel , A.J. de Langen , H.J.M. Groen , M.R. Groves , A.J. van der Wekken
{"title":"利用分子建模预测表皮生长因子受体外显子 20 基因突变的非小细胞肺癌患者的治疗效果。","authors":"F. Zwierenga ,&nbsp;L. Zhang ,&nbsp;J. Melcr ,&nbsp;E. Schuuring ,&nbsp;B.A.M.H. van Veggel ,&nbsp;A.J. de Langen ,&nbsp;H.J.M. Groen ,&nbsp;M.R. Groves ,&nbsp;A.J. van der Wekken","doi":"10.1016/j.lungcan.2024.107973","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>The structural effect of uncommon heterogenous in-frame deletion and/or insertion mutations within exon 20 (EGFRex20+) in relation to therapy response is poorly understood. This study aims to elucidate the structural alterations caused by EGFRex20+ mutations and correlate these changes with patient responses.</div></div><div><h3>Material and method</h3><div>We selected EGFRex20+ mutations from advanced NSCLC patients in the Position20 and AFACET studies for computational analysis. Homology models representing both inactive and active conformations of these mutations were generated using the Swiss-Model server. Molecular docking studies with EGFR-TKIs was conducted using smina, followed by Molecular Dynamic (MD) simulations performed with GROMACS. These computational findings were compared with clinical outcomes to evaluate their potential in predicting patient response.</div></div><div><h3>Results</h3><div>Our docking studies of 29 EGFRex20+ mutations revealed that the binding energies of afatinib, osimertinib, zipalertinib, and sunvozertinib, compared to the wild type, do not significantly impact either TKI’s efficacy. MD simulations for eight EGFRex20+ mutations (A763_Y764insFQEA, A767_V769dup, S768_D770dup, D770_N771insG, D770_P772dup, N771_H773dup, H773_V774insY and H773_V774delinsLM) revealed varying degrees of instability. For six variants, predicted activation based on the αC-helix stability and orientation, as well as TKI sensitivity, aligned well with clinical observations from the Position20 and AFACET studies. Two mutations (D770_N771insG and N771_H773dup) predicted as poor to moderate responders, showed minimal activation of the αC-helix region, warranting further investigation.</div></div><div><h3>Conclusion</h3><div>In conclusion, MD simulations can effectively predict patient outcomes by connecting computational results with clinical data and advancing our understanding of EGFR mutations and their therapeutic responses.</div></div>","PeriodicalId":18129,"journal":{"name":"Lung Cancer","volume":"197 ","pages":"Article 107973"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The prediction of treatment outcome in NSCLC patients harboring an EGFR exon 20 mutation using molecular modeling\",\"authors\":\"F. Zwierenga ,&nbsp;L. Zhang ,&nbsp;J. Melcr ,&nbsp;E. Schuuring ,&nbsp;B.A.M.H. van Veggel ,&nbsp;A.J. de Langen ,&nbsp;H.J.M. Groen ,&nbsp;M.R. Groves ,&nbsp;A.J. van der Wekken\",\"doi\":\"10.1016/j.lungcan.2024.107973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>The structural effect of uncommon heterogenous in-frame deletion and/or insertion mutations within exon 20 (EGFRex20+) in relation to therapy response is poorly understood. This study aims to elucidate the structural alterations caused by EGFRex20+ mutations and correlate these changes with patient responses.</div></div><div><h3>Material and method</h3><div>We selected EGFRex20+ mutations from advanced NSCLC patients in the Position20 and AFACET studies for computational analysis. Homology models representing both inactive and active conformations of these mutations were generated using the Swiss-Model server. Molecular docking studies with EGFR-TKIs was conducted using smina, followed by Molecular Dynamic (MD) simulations performed with GROMACS. These computational findings were compared with clinical outcomes to evaluate their potential in predicting patient response.</div></div><div><h3>Results</h3><div>Our docking studies of 29 EGFRex20+ mutations revealed that the binding energies of afatinib, osimertinib, zipalertinib, and sunvozertinib, compared to the wild type, do not significantly impact either TKI’s efficacy. MD simulations for eight EGFRex20+ mutations (A763_Y764insFQEA, A767_V769dup, S768_D770dup, D770_N771insG, D770_P772dup, N771_H773dup, H773_V774insY and H773_V774delinsLM) revealed varying degrees of instability. For six variants, predicted activation based on the αC-helix stability and orientation, as well as TKI sensitivity, aligned well with clinical observations from the Position20 and AFACET studies. Two mutations (D770_N771insG and N771_H773dup) predicted as poor to moderate responders, showed minimal activation of the αC-helix region, warranting further investigation.</div></div><div><h3>Conclusion</h3><div>In conclusion, MD simulations can effectively predict patient outcomes by connecting computational results with clinical data and advancing our understanding of EGFR mutations and their therapeutic responses.</div></div>\",\"PeriodicalId\":18129,\"journal\":{\"name\":\"Lung Cancer\",\"volume\":\"197 \",\"pages\":\"Article 107973\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lung Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169500224005075\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169500224005075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:人们对表皮生长因子受体(EGFR)外显子20(EGFRex20+)内不常见的异源框内缺失和/或插入突变的结构效应与治疗反应的关系知之甚少。本研究旨在阐明表皮生长因子受体ex20+突变引起的结构改变,并将这些改变与患者的反应相关联:我们选择了 Position20 和 AFACET 研究中晚期 NSCLC 患者的 EGFRex20+ 突变进行计算分析。使用 Swiss-Model 服务器生成了代表这些突变的非活性和活性构象的同源模型。使用 smina 与 EGFR-TKIs 进行了分子对接研究,然后使用 GROMACS 进行了分子动力学 (MD) 模拟。这些计算结果与临床结果进行了比较,以评估它们在预测患者反应方面的潜力:结果:我们对 29 个 EGFRex20+ 突变基因进行的对接研究显示,与野生型相比,阿法替尼、奥西莫替尼、齐帕替尼和桑沃泽替尼的结合能对两种 TKI 的疗效均无显著影响。对八个 EGFRex20+ 突变(A763_Y764insFQEA、A767_V769dup、S768_D770dup、D770_N771insG、D770_P772dup、N771_H773dup、H773_V774insY 和 H773_V774delinsLM)的 MD 模拟显示了不同程度的不稳定性。对于 6 个变异,根据 αC 螺旋的稳定性和方向以及 TKI 敏感性预测的激活与 Position20 和 AFACET 研究的临床观察结果非常吻合。两个突变(D770_N771insG 和 N771_H773dup)被预测为反应较差至中等,但显示出对αC螺旋区域的激活极小,值得进一步研究:总之,通过将计算结果与临床数据联系起来,MD 模拟可以有效预测患者的预后,并促进我们对表皮生长因子受体突变及其治疗反应的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The prediction of treatment outcome in NSCLC patients harboring an EGFR exon 20 mutation using molecular modeling

Introduction

The structural effect of uncommon heterogenous in-frame deletion and/or insertion mutations within exon 20 (EGFRex20+) in relation to therapy response is poorly understood. This study aims to elucidate the structural alterations caused by EGFRex20+ mutations and correlate these changes with patient responses.

Material and method

We selected EGFRex20+ mutations from advanced NSCLC patients in the Position20 and AFACET studies for computational analysis. Homology models representing both inactive and active conformations of these mutations were generated using the Swiss-Model server. Molecular docking studies with EGFR-TKIs was conducted using smina, followed by Molecular Dynamic (MD) simulations performed with GROMACS. These computational findings were compared with clinical outcomes to evaluate their potential in predicting patient response.

Results

Our docking studies of 29 EGFRex20+ mutations revealed that the binding energies of afatinib, osimertinib, zipalertinib, and sunvozertinib, compared to the wild type, do not significantly impact either TKI’s efficacy. MD simulations for eight EGFRex20+ mutations (A763_Y764insFQEA, A767_V769dup, S768_D770dup, D770_N771insG, D770_P772dup, N771_H773dup, H773_V774insY and H773_V774delinsLM) revealed varying degrees of instability. For six variants, predicted activation based on the αC-helix stability and orientation, as well as TKI sensitivity, aligned well with clinical observations from the Position20 and AFACET studies. Two mutations (D770_N771insG and N771_H773dup) predicted as poor to moderate responders, showed minimal activation of the αC-helix region, warranting further investigation.

Conclusion

In conclusion, MD simulations can effectively predict patient outcomes by connecting computational results with clinical data and advancing our understanding of EGFR mutations and their therapeutic responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lung Cancer
Lung Cancer 医学-呼吸系统
CiteScore
9.40
自引率
3.80%
发文量
407
审稿时长
25 days
期刊介绍: Lung Cancer is an international publication covering the clinical, translational and basic science of malignancies of the lung and chest region.Original research articles, early reports, review articles, editorials and correspondence covering the prevention, epidemiology and etiology, basic biology, pathology, clinical assessment, surgery, chemotherapy, radiotherapy, combined treatment modalities, other treatment modalities and outcomes of lung cancer are welcome.
期刊最新文献
Asian Thoracic Oncology Research Group expert consensus statement on the peri-operative management of non-small cell lung cancer First-line osimertinib compared to earlier generation TKIs in advanced EGFR-mutant NSCLC: A real-world survival analysis Rearranged during transfection (RET) lung cancer – Update on targeted therapies Targeted therapy for older patients with an oncogene driven non-small cell lung cancer: Recommendations from a SIOG expert group Validation of the 9th edition of the TNM staging system for limited-stage small cell lung cancer after Resection: A multicenter study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1