{"title":"利用Cas-9消化马努卡质粒和线粒体DNA提高微生物群的回收率","authors":"J L Larrouy, H J Ridgway, M K Dhami, E E Jones","doi":"10.1007/s00248-024-02436-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding host-microbe interactions in planta is an expanding area of research. Amplicon sequencing of the 16S rRNA gene is a powerful and common method to study bacterial communities associated with plants. However, the co-amplification of mitochondrial and plastid 16S rRNA genes by universal primers impairs the sensitivity and performance of 16S rRNA sequencing. In 2020, a new method, Cas-16S-seq, was reported in the literature to remove host contamination for profiling the microbiota in rice, a well-studied domestic plant, by engineering RNA-programmable Cas9 nuclease in 16S rRNA sequencing. For the first time, we tested the efficiency and applicability of the Cas-16S-seq method on foliage, flowers, and seed of a non-domesticated wild plant for which there is limited genomic information, Leptospermum scoparium (mānuka). Our study demonstrated the efficiency of the Cas-16S-seq method for L. scoparium in removing host contamination in V4-16S amplicons. An increase of 46% in bacterial sequences was found using six guide RNAs (gRNAs), three gRNAs targeting the mitochondrial sequence, and three gRNAs targeting the chloroplast sequence of L. scoparium in the same reaction. An increase of 72% in bacterial sequences was obtained by targeting the mitochondrial and chloroplast sequences of L. scoparium in the same sample at two different steps of the library preparation (DNA and 1st step PCR). The number of OTUs (operational taxonomic units) retrieved from soil samples was consistent when using the different methods (Cas-16S-seq and 16S-seq) indicating that the Cas-16S-seq implemented for L. scoparium did not introduce bias to microbiota profiling. Our findings provide a valuable tool for future studies investigating the bacterial microbiota of L. scoparium in addition to evaluating an important tool in the plant microbiota research on other non-domesticated wild species.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"124"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvement in Microbiota Recovery Using Cas-9 Digestion of Mānuka Plastid and Mitochondrial DNA.\",\"authors\":\"J L Larrouy, H J Ridgway, M K Dhami, E E Jones\",\"doi\":\"10.1007/s00248-024-02436-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding host-microbe interactions in planta is an expanding area of research. Amplicon sequencing of the 16S rRNA gene is a powerful and common method to study bacterial communities associated with plants. However, the co-amplification of mitochondrial and plastid 16S rRNA genes by universal primers impairs the sensitivity and performance of 16S rRNA sequencing. In 2020, a new method, Cas-16S-seq, was reported in the literature to remove host contamination for profiling the microbiota in rice, a well-studied domestic plant, by engineering RNA-programmable Cas9 nuclease in 16S rRNA sequencing. For the first time, we tested the efficiency and applicability of the Cas-16S-seq method on foliage, flowers, and seed of a non-domesticated wild plant for which there is limited genomic information, Leptospermum scoparium (mānuka). Our study demonstrated the efficiency of the Cas-16S-seq method for L. scoparium in removing host contamination in V4-16S amplicons. An increase of 46% in bacterial sequences was found using six guide RNAs (gRNAs), three gRNAs targeting the mitochondrial sequence, and three gRNAs targeting the chloroplast sequence of L. scoparium in the same reaction. An increase of 72% in bacterial sequences was obtained by targeting the mitochondrial and chloroplast sequences of L. scoparium in the same sample at two different steps of the library preparation (DNA and 1st step PCR). The number of OTUs (operational taxonomic units) retrieved from soil samples was consistent when using the different methods (Cas-16S-seq and 16S-seq) indicating that the Cas-16S-seq implemented for L. scoparium did not introduce bias to microbiota profiling. Our findings provide a valuable tool for future studies investigating the bacterial microbiota of L. scoparium in addition to evaluating an important tool in the plant microbiota research on other non-domesticated wild species.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"124\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02436-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02436-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Improvement in Microbiota Recovery Using Cas-9 Digestion of Mānuka Plastid and Mitochondrial DNA.
Understanding host-microbe interactions in planta is an expanding area of research. Amplicon sequencing of the 16S rRNA gene is a powerful and common method to study bacterial communities associated with plants. However, the co-amplification of mitochondrial and plastid 16S rRNA genes by universal primers impairs the sensitivity and performance of 16S rRNA sequencing. In 2020, a new method, Cas-16S-seq, was reported in the literature to remove host contamination for profiling the microbiota in rice, a well-studied domestic plant, by engineering RNA-programmable Cas9 nuclease in 16S rRNA sequencing. For the first time, we tested the efficiency and applicability of the Cas-16S-seq method on foliage, flowers, and seed of a non-domesticated wild plant for which there is limited genomic information, Leptospermum scoparium (mānuka). Our study demonstrated the efficiency of the Cas-16S-seq method for L. scoparium in removing host contamination in V4-16S amplicons. An increase of 46% in bacterial sequences was found using six guide RNAs (gRNAs), three gRNAs targeting the mitochondrial sequence, and three gRNAs targeting the chloroplast sequence of L. scoparium in the same reaction. An increase of 72% in bacterial sequences was obtained by targeting the mitochondrial and chloroplast sequences of L. scoparium in the same sample at two different steps of the library preparation (DNA and 1st step PCR). The number of OTUs (operational taxonomic units) retrieved from soil samples was consistent when using the different methods (Cas-16S-seq and 16S-seq) indicating that the Cas-16S-seq implemented for L. scoparium did not introduce bias to microbiota profiling. Our findings provide a valuable tool for future studies investigating the bacterial microbiota of L. scoparium in addition to evaluating an important tool in the plant microbiota research on other non-domesticated wild species.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.