多针水浴电纺法制备的纳米纤维涂层纱线的电场模拟、结构和性能。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-16 DOI:10.1088/1361-6528/ad8422
Xiaohu Wang, Xinru Zhou, Xiaoman Zhao, Xiao Han, Jianhan Hong
{"title":"多针水浴电纺法制备的纳米纤维涂层纱线的电场模拟、结构和性能。","authors":"Xiaohu Wang, Xinru Zhou, Xiaoman Zhao, Xiao Han, Jianhan Hong","doi":"10.1088/1361-6528/ad8422","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issue of low yield in the preparation of nanofiber materials using single-needle electrospinning technology, multi-needle electrospinning technology has emerged as a crucial solution for mass production. However, the mutual interference of multiple electric fields between the needles can cause significant randomness in the morphology of the produced nanofibers. To better predict the influence of electric field distribution on nanofiber morphology, simulation analysis of the multi-needle arrangement was conducted using finite element analysis (FEA) software. Nanofiber-coated yarn was produced continuously with the core yarn rotating. The water bath was utilized as the receiver of nanofibers on self-made water bath electrospinning equipment. The electric field distribution and mutual interference under seven different needle arrangements was simulated and analyzed by FEA software ANSYS Maxwell. The results indicated that when the needles were arranged diagonally in a staggered pattern and directly above the core yarn, the simulated electric field distribution was relatively uniform, with less mutual interference. The produced nanofibers exhibited a finer diameter and the diameter distribution was more concentrated. In addition, the nanofiber coating showed higher crystallinity and better mechanical properties.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric field simulation, structure and properties of nanofiber- coated yarn prepared by multi-needle water bath electrospinning.\",\"authors\":\"Xiaohu Wang, Xinru Zhou, Xiaoman Zhao, Xiao Han, Jianhan Hong\",\"doi\":\"10.1088/1361-6528/ad8422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the issue of low yield in the preparation of nanofiber materials using single-needle electrospinning technology, multi-needle electrospinning technology has emerged as a crucial solution for mass production. However, the mutual interference of multiple electric fields between the needles can cause significant randomness in the morphology of the produced nanofibers. To better predict the influence of electric field distribution on nanofiber morphology, simulation analysis of the multi-needle arrangement was conducted using finite element analysis (FEA) software. Nanofiber-coated yarn was produced continuously with the core yarn rotating. The water bath was utilized as the receiver of nanofibers on self-made water bath electrospinning equipment. The electric field distribution and mutual interference under seven different needle arrangements was simulated and analyzed by FEA software ANSYS Maxwell. The results indicated that when the needles were arranged diagonally in a staggered pattern and directly above the core yarn, the simulated electric field distribution was relatively uniform, with less mutual interference. The produced nanofibers exhibited a finer diameter and the diameter distribution was more concentrated. In addition, the nanofiber coating showed higher crystallinity and better mechanical properties.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8422\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8422","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决使用单针电纺丝技术制备纳米纤维材料产量低的问题,多针电纺丝技术已成为大规模生产的重要解决方案。然而,多针之间的电场相互干扰会导致所制备纳米纤维的形态具有明显的随机性。为了更好地预测电场分布对纳米纤维形态的影响,我们使用有限元分析软件对多针排列进行了模拟分析。在芯纱旋转的情况下连续生产纳米纤维涂层纱。在自制的水浴电纺设备上利用水浴作为纳米纤维的接收器。利用有限元分析软件 ANSYS Maxwell 模拟和分析了七种不同针排列方式下的电场分布和相互干扰。结果表明,当织针呈对角线交错排列且位于芯纱正上方时,模拟的电场分布相对均匀,相互干扰较少;当织针呈对角线交错排列且位于芯纱正上方时,模拟的电场分布相对均匀,相互干扰较少。生成的纳米纤维直径更细,直径分布更集中。此外,纳米纤维涂层的结晶度更高,机械性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electric field simulation, structure and properties of nanofiber- coated yarn prepared by multi-needle water bath electrospinning.

To address the issue of low yield in the preparation of nanofiber materials using single-needle electrospinning technology, multi-needle electrospinning technology has emerged as a crucial solution for mass production. However, the mutual interference of multiple electric fields between the needles can cause significant randomness in the morphology of the produced nanofibers. To better predict the influence of electric field distribution on nanofiber morphology, simulation analysis of the multi-needle arrangement was conducted using finite element analysis (FEA) software. Nanofiber-coated yarn was produced continuously with the core yarn rotating. The water bath was utilized as the receiver of nanofibers on self-made water bath electrospinning equipment. The electric field distribution and mutual interference under seven different needle arrangements was simulated and analyzed by FEA software ANSYS Maxwell. The results indicated that when the needles were arranged diagonally in a staggered pattern and directly above the core yarn, the simulated electric field distribution was relatively uniform, with less mutual interference. The produced nanofibers exhibited a finer diameter and the diameter distribution was more concentrated. In addition, the nanofiber coating showed higher crystallinity and better mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Flexible pressure sensor with metallic reinforcement and graphene nanowalls for wearable electronics device. Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. Focus on Institute of Applied Physics at Seoul National University. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1