{"title":"用于比色传感和结构颜色的等离子体金属表面中的法诺共振工程。","authors":"Reza Kohandani, Simarjeet Singh Saini","doi":"10.1088/1361-6528/ad83d7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present the design and fabrication of a plasmonic metasurface based on titanium dioxide (TiO<sub>2</sub>) nanowire arrays integrated with plasmonic layers. The structure is engineered to produce Fano resonances within the visible spectrum, resulting from the coupling of localized surface plasmon resonances, lattice modes, and nanowire's optical modes. Experimentally, we show that by tuning the geometrical features of the metasurface, such as the length, diameter, and period of the nanowires, a high-quality factor single peak can be achieved in the reflection spectra, resulting in vivid structural colors in bright field. To our knowledge, this is the first demonstration of such vivid colors with nanowire arrays in bright field reflections. When characterized by refractive index fluids around the refractive index of water, the plasmonic metasurface also showed great potential for biochemical colorimetric sensing. The best design demonstrated a bulk sensitivity of 183 nm/RIU with high Q resonance features and linear changes in color values using image processing.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Fano resonances in plasmonic metasurfaces for colorimetric sensing and structural colors.\",\"authors\":\"Reza Kohandani, Simarjeet Singh Saini\",\"doi\":\"10.1088/1361-6528/ad83d7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present the design and fabrication of a plasmonic metasurface based on titanium dioxide (TiO<sub>2</sub>) nanowire arrays integrated with plasmonic layers. The structure is engineered to produce Fano resonances within the visible spectrum, resulting from the coupling of localized surface plasmon resonances, lattice modes, and nanowire's optical modes. Experimentally, we show that by tuning the geometrical features of the metasurface, such as the length, diameter, and period of the nanowires, a high-quality factor single peak can be achieved in the reflection spectra, resulting in vivid structural colors in bright field. To our knowledge, this is the first demonstration of such vivid colors with nanowire arrays in bright field reflections. When characterized by refractive index fluids around the refractive index of water, the plasmonic metasurface also showed great potential for biochemical colorimetric sensing. The best design demonstrated a bulk sensitivity of 183 nm/RIU with high Q resonance features and linear changes in color values using image processing.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad83d7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad83d7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Fano resonances in plasmonic metasurfaces for colorimetric sensing and structural colors.
In this paper, we present the design and fabrication of a plasmonic metasurface based on titanium dioxide (TiO2) nanowire arrays integrated with plasmonic layers. The structure is engineered to produce Fano resonances within the visible spectrum, resulting from the coupling of localized surface plasmon resonances, lattice modes, and nanowire's optical modes. Experimentally, we show that by tuning the geometrical features of the metasurface, such as the length, diameter, and period of the nanowires, a high-quality factor single peak can be achieved in the reflection spectra, resulting in vivid structural colors in bright field. To our knowledge, this is the first demonstration of such vivid colors with nanowire arrays in bright field reflections. When characterized by refractive index fluids around the refractive index of water, the plasmonic metasurface also showed great potential for biochemical colorimetric sensing. The best design demonstrated a bulk sensitivity of 183 nm/RIU with high Q resonance features and linear changes in color values using image processing.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.