{"title":"利用显微纳米力学测量方法估算金纳米接触上杨氏模量的局部变化。","authors":"Jiaming Liu, Jiaqi Zhang, Kohei Aso, Toyoko Arai, Masahiko Tomitori, Yoshifumi Oshima","doi":"10.1088/1361-6528/ad83d6","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale materials tend to have a single crystal domain, leading to not only size dependence but also orientation dependence of their mechanical properties. Recently, we developed a microscopic nanomechanical measurement method (MNMM), which enabled us to obtain equivalent spring constants (force gradients) of nanocontacts (NCs) while observing their atomic structures by transmission electron microscopy (TEM). Therein, we evaluated Young's modulus based on a model that a newly introduced layer at the thinnest section of a NC determined the change in the measured equivalent spring constant, and discussed their size dependence. However, this model is not general for other nanomaterials that do not exhibit the introduction of a new atomic layer while stretching. In this study, using MNMM, we propose a new analytical method to directly retrieve the local Young's modulus of nanomaterials by measuring initial lattice spacing and its displacement of a local region in the TEM image during the stretching of the NC. This reveals the size dependence of local Young's modulus at various positions of the NC at once. As a result, our estimated Young's modulus for a gold [111] NC showed a size dependence similar to the one previously reported. This indicates that this analytical method benefits in revealing the mechanical properties of not only nanomaterials but also structurally heterogeneous materials such as high-entropy alloys.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of local variation in Young's modulus over a gold nanocontact using microscopic nanomechanical measurement method.\",\"authors\":\"Jiaming Liu, Jiaqi Zhang, Kohei Aso, Toyoko Arai, Masahiko Tomitori, Yoshifumi Oshima\",\"doi\":\"10.1088/1361-6528/ad83d6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoscale materials tend to have a single crystal domain, leading to not only size dependence but also orientation dependence of their mechanical properties. Recently, we developed a microscopic nanomechanical measurement method (MNMM), which enabled us to obtain equivalent spring constants (force gradients) of nanocontacts (NCs) while observing their atomic structures by transmission electron microscopy (TEM). Therein, we evaluated Young's modulus based on a model that a newly introduced layer at the thinnest section of a NC determined the change in the measured equivalent spring constant, and discussed their size dependence. However, this model is not general for other nanomaterials that do not exhibit the introduction of a new atomic layer while stretching. In this study, using MNMM, we propose a new analytical method to directly retrieve the local Young's modulus of nanomaterials by measuring initial lattice spacing and its displacement of a local region in the TEM image during the stretching of the NC. This reveals the size dependence of local Young's modulus at various positions of the NC at once. As a result, our estimated Young's modulus for a gold [111] NC showed a size dependence similar to the one previously reported. This indicates that this analytical method benefits in revealing the mechanical properties of not only nanomaterials but also structurally heterogeneous materials such as high-entropy alloys.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad83d6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad83d6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
纳米级材料往往具有单晶域,这导致其机械性能不仅与尺寸有关,而且与取向有关。最近,我们开发了一种微观纳米力学测量方法(MNMM),使我们能够在通过透射电子显微镜(TEM)观察纳米接触的原子结构的同时,获得纳米接触的等效弹簧常数(力梯度)。在这一模型的基础上,我们评估了杨氏模量,即纳米触头最薄部分新引入的层决定了测量到的等效弹簧常数的变化,并讨论了它们的尺寸依赖性。然而,这一模型对于其他纳米材料来说并不通用,因为这些材料在拉伸过程中不会引入新的原子层。在本研究中,我们利用 MNMM 提出了一种新的分析方法,通过测量纳米接触拉伸过程中的初始晶格间距及其在 TEM 图像中局部区域的位移,直接获取纳米材料的局部杨氏模量。这就一次性揭示了纳米接触不同位置的局部杨氏模量的尺寸依赖性。因此,我们估算的金 [111] 纳米接触的杨氏模量与之前报道的杨氏模量的尺寸依赖性相似。这表明这种分析方法不仅有利于揭示纳米材料的力学性能,而且有利于揭示高熵合金等结构异质材料的力学性能。
Estimation of local variation in Young's modulus over a gold nanocontact using microscopic nanomechanical measurement method.
Nanoscale materials tend to have a single crystal domain, leading to not only size dependence but also orientation dependence of their mechanical properties. Recently, we developed a microscopic nanomechanical measurement method (MNMM), which enabled us to obtain equivalent spring constants (force gradients) of nanocontacts (NCs) while observing their atomic structures by transmission electron microscopy (TEM). Therein, we evaluated Young's modulus based on a model that a newly introduced layer at the thinnest section of a NC determined the change in the measured equivalent spring constant, and discussed their size dependence. However, this model is not general for other nanomaterials that do not exhibit the introduction of a new atomic layer while stretching. In this study, using MNMM, we propose a new analytical method to directly retrieve the local Young's modulus of nanomaterials by measuring initial lattice spacing and its displacement of a local region in the TEM image during the stretching of the NC. This reveals the size dependence of local Young's modulus at various positions of the NC at once. As a result, our estimated Young's modulus for a gold [111] NC showed a size dependence similar to the one previously reported. This indicates that this analytical method benefits in revealing the mechanical properties of not only nanomaterials but also structurally heterogeneous materials such as high-entropy alloys.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.