微RNA-124-3p在异硫氰酸苄酯抑制乳腺癌干细胞中的作用

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pharmaceutical Research Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI:10.1007/s11095-024-03775-2
Su-Hyeong Kim, Shivendra V Singh
{"title":"微RNA-124-3p在异硫氰酸苄酯抑制乳腺癌干细胞中的作用","authors":"Su-Hyeong Kim, Shivendra V Singh","doi":"10.1007/s11095-024-03775-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We have shown previously that benzyl isothiocyanate (BITC) derived from cruciferous vegetables inhibits self-renewal of breast cancer stem-like cells (bCSC). The current study provides insights into the mechanism of bCSC inhibition by BITC.</p><p><strong>Methods: </strong>Quantitative real time-polymerase chain reaction and western blot analysis were performed to detect microRNAs (miRNAs) and Forkhead box Q1 (FoxQ1) protein expression, respectively. The bCSC were characterized by aldehyde dehydrogenase 1 activity and flow cytometric analysis of CD49f <sup>high</sup>/CD133<sup>high</sup> fraction.</p><p><strong>Results: </strong>BITC treatment resulted in induction of miR-124-3p expression in MDA-MB-231 and MCF-7 cells. miR-124-3p did not affect BITC-mediated inhibition of cell migration or cell proliferation but it significantly regulated bCSC in response to BITC. We also found that miR-124-3p directly targets the 3'untranslated regions (UTR) of FoxQ1 and negatively regulates its expression. The BITC-mediated inhibition of bCSC was partially attenuated by miR-124-3p inhibitor.</p><p><strong>Conclusions: </strong>These findings indicate that miR-124-3p plays an important role in BITC-mediated inhibition of bCSC.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1921-1932"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of MicroRNA-124-3p in Breast Cancer Stem Cell Inhibition by Benzyl Isothiocyanate.\",\"authors\":\"Su-Hyeong Kim, Shivendra V Singh\",\"doi\":\"10.1007/s11095-024-03775-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We have shown previously that benzyl isothiocyanate (BITC) derived from cruciferous vegetables inhibits self-renewal of breast cancer stem-like cells (bCSC). The current study provides insights into the mechanism of bCSC inhibition by BITC.</p><p><strong>Methods: </strong>Quantitative real time-polymerase chain reaction and western blot analysis were performed to detect microRNAs (miRNAs) and Forkhead box Q1 (FoxQ1) protein expression, respectively. The bCSC were characterized by aldehyde dehydrogenase 1 activity and flow cytometric analysis of CD49f <sup>high</sup>/CD133<sup>high</sup> fraction.</p><p><strong>Results: </strong>BITC treatment resulted in induction of miR-124-3p expression in MDA-MB-231 and MCF-7 cells. miR-124-3p did not affect BITC-mediated inhibition of cell migration or cell proliferation but it significantly regulated bCSC in response to BITC. We also found that miR-124-3p directly targets the 3'untranslated regions (UTR) of FoxQ1 and negatively regulates its expression. The BITC-mediated inhibition of bCSC was partially attenuated by miR-124-3p inhibitor.</p><p><strong>Conclusions: </strong>These findings indicate that miR-124-3p plays an important role in BITC-mediated inhibition of bCSC.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1921-1932\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03775-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03775-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们以前研究发现,从十字花科蔬菜中提取的异硫氰酸苄酯(BITC)可抑制乳腺癌干样细胞(bCSC)的自我更新。本研究深入探讨了BITC抑制乳腺癌干细胞的机制:方法:采用定量实时聚合酶链反应和Western印迹分析分别检测微RNA(miRNA)和叉头盒Q1(FoxQ1)蛋白的表达。通过醛脱氢酶1活性和流式细胞分析CD49f高/CD133高部分对bCSC进行定性:miR-124-3p并不影响BITC介导的细胞迁移或细胞增殖抑制作用,但它能显著调控BITC作用下的bCSC。我们还发现,miR-124-3p 直接靶向 FoxQ1 的 3'非翻译区(UTR),并负向调控其表达。miR-124-3p抑制剂部分减弱了BITC介导的对bCSC的抑制作用:这些研究结果表明,miR-124-3p 在 BITC 介导的 bCSC 抑制过程中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of MicroRNA-124-3p in Breast Cancer Stem Cell Inhibition by Benzyl Isothiocyanate.

Purpose: We have shown previously that benzyl isothiocyanate (BITC) derived from cruciferous vegetables inhibits self-renewal of breast cancer stem-like cells (bCSC). The current study provides insights into the mechanism of bCSC inhibition by BITC.

Methods: Quantitative real time-polymerase chain reaction and western blot analysis were performed to detect microRNAs (miRNAs) and Forkhead box Q1 (FoxQ1) protein expression, respectively. The bCSC were characterized by aldehyde dehydrogenase 1 activity and flow cytometric analysis of CD49f high/CD133high fraction.

Results: BITC treatment resulted in induction of miR-124-3p expression in MDA-MB-231 and MCF-7 cells. miR-124-3p did not affect BITC-mediated inhibition of cell migration or cell proliferation but it significantly regulated bCSC in response to BITC. We also found that miR-124-3p directly targets the 3'untranslated regions (UTR) of FoxQ1 and negatively regulates its expression. The BITC-mediated inhibition of bCSC was partially attenuated by miR-124-3p inhibitor.

Conclusions: These findings indicate that miR-124-3p plays an important role in BITC-mediated inhibition of bCSC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
期刊最新文献
Physiologically Based Pharmacokinetic Modeling to Assess Ritonavir-Digoxin Interactions and Recommendations for Co-Administration Regimens. Pharmacological Innovations in Space: Challenges and Future Perspectives. Regulatory Role of eIF2αK4 in Amino Acid Transporter Expression in Mouse Brain Capillary Endothelial Cells. Chemical Distribution Uniformity Assessment of "Intra-Tablet" by Hyperspectral Raman Imaging Analysis. The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1