Nidhi Kandhol, Vijay Pratap Singh, Sangeeta Pandey, Shivesh Sharma, Lijuan Zhao, Francisco J Corpas, Zhong-Hua Chen, Jason C White, Durgesh Kumar Tripathi
{"title":"植物中的纳米级材料和 NO-ROS 平衡:三边动力学。","authors":"Nidhi Kandhol, Vijay Pratap Singh, Sangeeta Pandey, Shivesh Sharma, Lijuan Zhao, Francisco J Corpas, Zhong-Hua Chen, Jason C White, Durgesh Kumar Tripathi","doi":"10.1016/j.tplants.2024.06.009","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (<sup>•</sup>NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for <sup>•</sup>NO donors, thus facilitating controlled and synchronized release and targeted delivery of <sup>•</sup>NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and <sup>•</sup>NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics.\",\"authors\":\"Nidhi Kandhol, Vijay Pratap Singh, Sangeeta Pandey, Shivesh Sharma, Lijuan Zhao, Francisco J Corpas, Zhong-Hua Chen, Jason C White, Durgesh Kumar Tripathi\",\"doi\":\"10.1016/j.tplants.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (<sup>•</sup>NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for <sup>•</sup>NO donors, thus facilitating controlled and synchronized release and targeted delivery of <sup>•</sup>NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and <sup>•</sup>NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.06.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.06.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics.
Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (•NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for •NO donors, thus facilitating controlled and synchronized release and targeted delivery of •NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and •NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.