预测始于诊断:估算首次癫痫发作门诊的癫痫复发风险。

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY Seizure-European Journal of Epilepsy Pub Date : 2024-09-19 DOI:10.1016/j.seizure.2024.09.013
Suyi Ooi , Chris Tailby , Naoto Nagino , Patrick W. Carney , Graeme D. Jackson , David N. Vaughan
{"title":"预测始于诊断:估算首次癫痫发作门诊的癫痫复发风险。","authors":"Suyi Ooi ,&nbsp;Chris Tailby ,&nbsp;Naoto Nagino ,&nbsp;Patrick W. Carney ,&nbsp;Graeme D. Jackson ,&nbsp;David N. Vaughan","doi":"10.1016/j.seizure.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To assess the feasibility of using a seizure recurrence prediction tool in a First Seizure Clinic, considering (1) the accuracy of initial clinical diagnoses and (2) performance of automated computational models in predicting seizure recurrence after first unprovoked seizure (FUS).</div></div><div><h3>Methods</h3><div>To assess diagnostic accuracy, we analysed all sustained and revised diagnoses in patients seen at a First Seizure Clinic over 5 years with 6+ months follow-up (‘accuracy cohort’, n = 487).</div><div>To estimate prediction of 12-month seizure recurrence after FUS, we used a logistic regression of clinical factors on a multicentre FUS cohort (‘prediction cohort’, n = 181), and compared performance to a recently published seizure recurrence model.</div></div><div><h3>Results</h3><div>Initial diagnosis was sustained over 6+ months follow-up in 69% of patients in the ‘accuracy cohort’. Misdiagnosis occurred in 5%, and determination of unclassified diagnosis in 9%. Progression to epilepsy occurred in 17%, either following FUS or initial acute symptomatic seizure.</div><div>Within the ‘prediction cohort’ with FUS, 12-month seizure recurrence rate was 41% (95% CI [33.8%, 48.5%]). Nocturnal seizure, focal seizure semiology and developmental disability were predictive factors. Our model yielded an Area under the Receiver Operating Characteristic curve (AUC) of 0.60 (95% CI [0.59, 0.64]).</div></div><div><h3>Conclusions</h3><div>High clinical accuracy can be achieved at the initial visit to a First Seizure Clinic. This shows that diagnosis will not limit the application of seizure recurrence prediction tools in this context. However, based on the modest performance of currently available seizure recurrence prediction tools using clinical factors, we conclude that data beyond clinical factors alone will be needed to improve predictive performance.</div></div>","PeriodicalId":49552,"journal":{"name":"Seizure-European Journal of Epilepsy","volume":"122 ","pages":"Pages 87-95"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction begins with diagnosis: Estimating seizure recurrence risk in the First Seizure Clinic\",\"authors\":\"Suyi Ooi ,&nbsp;Chris Tailby ,&nbsp;Naoto Nagino ,&nbsp;Patrick W. Carney ,&nbsp;Graeme D. Jackson ,&nbsp;David N. Vaughan\",\"doi\":\"10.1016/j.seizure.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>To assess the feasibility of using a seizure recurrence prediction tool in a First Seizure Clinic, considering (1) the accuracy of initial clinical diagnoses and (2) performance of automated computational models in predicting seizure recurrence after first unprovoked seizure (FUS).</div></div><div><h3>Methods</h3><div>To assess diagnostic accuracy, we analysed all sustained and revised diagnoses in patients seen at a First Seizure Clinic over 5 years with 6+ months follow-up (‘accuracy cohort’, n = 487).</div><div>To estimate prediction of 12-month seizure recurrence after FUS, we used a logistic regression of clinical factors on a multicentre FUS cohort (‘prediction cohort’, n = 181), and compared performance to a recently published seizure recurrence model.</div></div><div><h3>Results</h3><div>Initial diagnosis was sustained over 6+ months follow-up in 69% of patients in the ‘accuracy cohort’. Misdiagnosis occurred in 5%, and determination of unclassified diagnosis in 9%. Progression to epilepsy occurred in 17%, either following FUS or initial acute symptomatic seizure.</div><div>Within the ‘prediction cohort’ with FUS, 12-month seizure recurrence rate was 41% (95% CI [33.8%, 48.5%]). Nocturnal seizure, focal seizure semiology and developmental disability were predictive factors. Our model yielded an Area under the Receiver Operating Characteristic curve (AUC) of 0.60 (95% CI [0.59, 0.64]).</div></div><div><h3>Conclusions</h3><div>High clinical accuracy can be achieved at the initial visit to a First Seizure Clinic. This shows that diagnosis will not limit the application of seizure recurrence prediction tools in this context. However, based on the modest performance of currently available seizure recurrence prediction tools using clinical factors, we conclude that data beyond clinical factors alone will be needed to improve predictive performance.</div></div>\",\"PeriodicalId\":49552,\"journal\":{\"name\":\"Seizure-European Journal of Epilepsy\",\"volume\":\"122 \",\"pages\":\"Pages 87-95\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seizure-European Journal of Epilepsy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1059131124002620\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seizure-European Journal of Epilepsy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1059131124002620","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的评估在癫痫首次发作门诊中使用癫痫复发预测工具的可行性,考虑(1)初步临床诊断的准确性和(2)自动计算模型在预测首次无诱因癫痫发作(FUS)后癫痫复发方面的性能:为了评估诊断的准确性,我们分析了在癫痫首次发作门诊就诊 5 年以上、随访 6 个月以上的患者的所有持续诊断和修订诊断("准确性队列",n = 487)。为了估计 FUS 术后 12 个月癫痫复发的预测率,我们对 FUS 多中心队列("预测队列",n = 181)的临床因素进行了逻辑回归,并与最近发表的癫痫复发模型进行了比较:结果:在 "准确性队列 "中,69%的患者在随访6个月以上后仍能得到初步诊断。5%的患者被误诊,9%的患者被确定为未分类诊断。17%的患者在FUS或最初的急性症状发作后发展为癫痫。在使用 FUS 的 "预测队列 "中,12 个月的癫痫复发率为 41%(95% CI [33.8%, 48.5%])。夜间发作、局灶性发作半身像和发育障碍是预测因素。我们的模型得出的接收者操作特征曲线下面积(AUC)为 0.60(95% CI [0.59,0.64]):结论:在首次癫痫发作门诊就诊时可获得较高的临床准确性。结论:首次癫痫发作门诊的首次就诊可达到较高的临床准确性,这表明诊断并不会限制癫痫发作复发预测工具在这种情况下的应用。然而,基于目前可用的使用临床因素的癫痫复发预测工具表现一般,我们得出结论:要提高预测性能,还需要临床因素以外的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction begins with diagnosis: Estimating seizure recurrence risk in the First Seizure Clinic

Objectives

To assess the feasibility of using a seizure recurrence prediction tool in a First Seizure Clinic, considering (1) the accuracy of initial clinical diagnoses and (2) performance of automated computational models in predicting seizure recurrence after first unprovoked seizure (FUS).

Methods

To assess diagnostic accuracy, we analysed all sustained and revised diagnoses in patients seen at a First Seizure Clinic over 5 years with 6+ months follow-up (‘accuracy cohort’, n = 487).
To estimate prediction of 12-month seizure recurrence after FUS, we used a logistic regression of clinical factors on a multicentre FUS cohort (‘prediction cohort’, n = 181), and compared performance to a recently published seizure recurrence model.

Results

Initial diagnosis was sustained over 6+ months follow-up in 69% of patients in the ‘accuracy cohort’. Misdiagnosis occurred in 5%, and determination of unclassified diagnosis in 9%. Progression to epilepsy occurred in 17%, either following FUS or initial acute symptomatic seizure.
Within the ‘prediction cohort’ with FUS, 12-month seizure recurrence rate was 41% (95% CI [33.8%, 48.5%]). Nocturnal seizure, focal seizure semiology and developmental disability were predictive factors. Our model yielded an Area under the Receiver Operating Characteristic curve (AUC) of 0.60 (95% CI [0.59, 0.64]).

Conclusions

High clinical accuracy can be achieved at the initial visit to a First Seizure Clinic. This shows that diagnosis will not limit the application of seizure recurrence prediction tools in this context. However, based on the modest performance of currently available seizure recurrence prediction tools using clinical factors, we conclude that data beyond clinical factors alone will be needed to improve predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seizure-European Journal of Epilepsy
Seizure-European Journal of Epilepsy 医学-临床神经学
CiteScore
5.60
自引率
6.70%
发文量
231
审稿时长
34 days
期刊介绍: Seizure - European Journal of Epilepsy is an international journal owned by Epilepsy Action (the largest member led epilepsy organisation in the UK). It provides a forum for papers on all topics related to epilepsy and seizure disorders.
期刊最新文献
Pregnancy planning in women with epilepsy: A single center observational study with focus on epilepsy type Parent-Reported mental health in nearest age siblings of children with Dravet Syndrome in Sweden Visual acuity in the context of retinal neuroaxonal loss in people with epilepsy Ictal tachycardia in children with epilepsy Safety profile of abdominal magnetic resonance imaging (MRI) performed for renal disease surveillance in tuberous sclerosis complex patients with vagus nerve stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1